diff --git a/main.py b/main.py index 5294d7e..2db088d 100644 --- a/main.py +++ b/main.py @@ -14,8 +14,7 @@ game_layer = GameLayer(api_key) # settings use_regulator = False other_upgrade_threshold = 0.25 -time_until_run_ends = 70 -utilities = 3 +time_until_run_ends = 90 money_reserve_multiplier = 1 @@ -76,32 +75,32 @@ def take_turn(): def develop_society(): - global state, queue_timeout, available_tiles, utilities, money_reserve_multiplier - queue_reset = 10 + global state, queue_timeout, available_tiles, money_reserve_multiplier + queue_reset = 5 if queue_timeout > 1: queue_timeout -= 1 best_residence = calculate_best_residence() + best_utility = calculate_best_utility() best_upgrade = get_best_upgrade() build_residence_score = 0 + build_utility_score = 0 build_upgrade_score = 0 # priority scores, 1 = very urgent, 0 = not urgent at all - # queue modifier * funds modifier * existing houses modifier - # build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (state.funds/(money_reserve_multiplier * 18000)) * (1 - (len(state.residences) / (1 + len(available_tiles) - utilities))) if len(state.residences) < 1: - build_residence_score = 100 - elif state.housing_queue < 5: + build_residence_score = 1000 + elif (current_tot_pop() - max_tot_pop() + state.housing_queue) < 0: build_residence_score = 0 + elif (current_tot_pop() - max_tot_pop() + state.housing_queue) > 15 and queue_timeout <= 0: + build_residence_score = 1000 elif best_residence: build_residence_score = best_residence[0] # * (state.housing_queue / (15 * queue_timeout)) - elif state.housing_queue > 15 and queue_timeout <= 0: - build_residence_score = 100 # upgrade_residence_score = 0 - # existing houses modifier * funds modifier * existing utilities modifier - build_utility_score = (len(state.residences) / (1 + len(available_tiles)-utilities)) * (1 - (16000 / (1 + state.funds))) * (1 - (len(state.utilities) / utilities)) - # turn modifier * funds modifier - # build_upgrade_score = (1 - (state.turn / 700)) * (state.funds/(money_reserve_multiplier * 7200)) + # + if best_utility: + build_utility_score = best_utility[0] + # if best_upgrade: build_upgrade_score = best_upgrade[0] @@ -115,15 +114,16 @@ def develop_society(): def sort_key(e): return e[1] decision.sort(reverse=True, key=sort_key) - print(decision) + # print(decision) + if decision[0][1] >= 0: if decision[0][0] == "build_residence": # build housing - queue_timeout = queue_reset if best_residence: + queue_timeout = queue_reset return build(best_residence[1]) if decision[0][0] == "build_utility": # build utilities - #return build("WindTurbine") - pass + if best_utility: + return build_place(best_utility[1], best_utility[2]) if decision[0][0] == "upgrade_residence": # upgrade housing pass if decision[0][0] == "build_upgrade": # build upgrades @@ -168,7 +168,7 @@ def something_needs_attention(): return True elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100): game_layer.build((building_under_construction[0], building_under_construction[1])) - if not state.residences[building_under_construction[2]].build_progress < 100: + if not state.utilities[building_under_construction[2]].build_progress < 100: building_under_construction = None return True else: @@ -178,6 +178,22 @@ def something_needs_attention(): return False +def max_tot_pop(): + global state + max_pop = 0 + for residence in state.residences: + max_pop += game_layer.get_blueprint(residence.building_name).max_pop + return max_pop + + +def current_tot_pop(): + global state + current_pop = 0 + for residence in state.residences: + current_pop += residence.current_pop + return current_pop + + def total_income(): global state income = 0 @@ -231,6 +247,7 @@ def calculate_best_upgrade(current_building): max_happiness = effect.max_happiness_increase * current_pop * rounds_left score = max_happiness/10 - co2 + # score = score / upgrade.cost best_upgrade.append((score, upgrade.name)) def sort_key(e): @@ -241,6 +258,38 @@ def calculate_best_upgrade(current_building): return best_upgrade[0] +def calculate_best_utility(): + global state, money_reserve_multiplier + + rounds_left = 700 - state.turn + best_utility = [] + for utility_blueprint in state.available_utility_buildings: + if state.turn >= utility_blueprint.release_tick and (money_reserve_multiplier*utility_blueprint.cost < state.funds): + for i in range(len(available_tiles)): + if isinstance(available_tiles[i], tuple): + score = 0 + cost = utility_blueprint.cost + for effect_name in utility_blueprint.effects: + effect = game_layer.get_effect(effect_name) + affected_people = tile_score(available_tiles[i], effect.radius)[0] + affected_buildings = tile_score(available_tiles[i], effect.radius)[1] + cost -= effect.building_income_increase * rounds_left + happiness_increase = affected_people * effect.max_happiness_increase * rounds_left + co2 = affected_people * effect.co2_per_pop_increase * rounds_left - effect.mwh_production * affected_buildings + score = happiness_increase / 10 - co2 + # score = score / cost + best_utility.append((score, utility_blueprint.building_name, i)) + + + + def sort_key(e): + return e[0] + best_utility.sort(reverse=True, key=sort_key) + if not best_utility: + return False + return best_utility[0] + + def calculate_best_residence(): global state, money_reserve_multiplier @@ -256,6 +305,7 @@ def calculate_best_residence(): max_happiness = residence_blueprint.max_happiness * residence_blueprint.max_pop * rounds_left score = residence_blueprint.max_pop*15 + max_happiness/10 - co2 + # score = score / residence_blueprint.cost best_residence.append((score, residence_blueprint.building_name)) def sort_key(e): @@ -275,6 +325,21 @@ def chart_map(): optimize_available_tiles() +def tile_score(tile, radius): + global state + affected_people = 0 + affected_buildings = 0 + # send back # of max people in radius + for residence in state.residences: + delta_x = abs(tile[0] - residence.X) + delta_y = abs(tile[1] - residence.Y) + distance = delta_x + delta_y + if distance <= radius: + affected_people += residence.current_pop + affected_buildings += 1 + return affected_people, affected_buildings + + def optimize_available_tiles(): global average_x, average_y, score_list average_x = 0 @@ -322,6 +387,32 @@ def adjust_energy(current_building): return False +def build_place(structure, i): + global building_under_construction, rounds_between_energy, state + if isinstance(available_tiles[i], tuple): + game_layer.place_foundation(available_tiles[i], structure) + for building in state.available_residence_buildings: + if structure in building.building_name: + for j in range(len(state.residences)): + building = state.residences[j] + coords_to_check = (building.X, building.Y) + if coords_to_check == available_tiles[i]: + available_tiles[i] = building + building_under_construction = (building.X, building.Y, j) + rounds_between_energy = len(state.residences)+2 + return True + for building in state.available_utility_buildings: + if structure in building.building_name: + for j in range(len(state.utilities)): + building = state.utilities[j] + coords_to_check = (building.X, building.Y) + if coords_to_check == available_tiles[i]: + available_tiles[i] = building + building_under_construction = (building.X, building.Y, j) + return True + return False + + def build(structure): global building_under_construction, rounds_between_energy, state for i in range(len(available_tiles)): @@ -345,7 +436,6 @@ def build(structure): if coords_to_check == available_tiles[i]: available_tiles[i] = building building_under_construction = (building.X, building.Y, j) - rounds_between_energy = len(state.residences)+2 return True return False