Merge branch 'felix-lek'

This commit is contained in:
Thefeli73 2020-10-08 04:47:48 +02:00
commit 5ac717cd7b
3 changed files with 486 additions and 97 deletions

8
clearGames.py Normal file
View File

@ -0,0 +1,8 @@
from game_layer import GameLayer
api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3"
game_layer = GameLayer(api_key)
def clear_it():
game_layer.force_end_game()
game_layer.force_end_game()
game_layer.force_end_game()
game_layer.force_end_game()

22
launcher.py Normal file
View File

@ -0,0 +1,22 @@
import main
import clearGames
from multiprocessing import Pool
proc_running = 4 # MAX 4!!!
def run_main(n):
result = main.main()
return result
def launch(list):
for result in list:
print("Game " + result[0] + " had a score of: " + str(result[1]))
if __name__ == '__main__':
clearGames.clear_it()
with Pool(proc_running) as p:
results = p.map(run_main, range(proc_running))
launch(results)

549
main.py
View File

@ -3,138 +3,497 @@ import time
import sys import sys
from sys import exit from sys import exit
from game_layer import GameLayer from game_layer import GameLayer
import game_state
import traceback import traceback
import random
api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3" api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3"
# The different map names can be found on considition.com/rules # The different map names can be found on considition.com/rules
map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected. map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected.
game_layer = GameLayer(api_key) game_layer = GameLayer(api_key)
state = game_layer.game_state # settings
usePrebuiltStrategy = False use_regulator = False # turns on if map max temp >21c
timeUntilRunEnds = 30 other_upgrade_threshold = 0.5
time_until_run_ends = 90
money_reserve_multiplier = 0.5
temp_acc_multiplier = 1.125
rounds_between_energy = 5
round_buffer = 78
# vars
EMA_temp = None
building_under_construction = None
available_tiles = []
state = None
queue_timeout = 1
edit_temp = None
maintain = None
def main(): def main():
global EMA_temp, rounds_between_energy, building_under_construction, available_tiles, state, queue_timeout, use_regulator
# global vars
rounds_between_energy = 5
EMA_temp = None
ema_length = 16
building_under_construction = None
available_tiles = []
queue_timeout = 1
#game_layer.force_end_game()
game_layer.new_game(map_name) game_layer.new_game(map_name)
print("Starting game: " + game_layer.game_state.game_id) print("Starting game: " + game_layer.game_state.game_id)
game_layer.start_game() game_layer.start_game()
# exit game after timeout # start timeout timer
start_time = time.time() start_time = time.time()
while game_layer.game_state.turn < game_layer.game_state.max_turns: state = game_layer.game_state
chart_map()
if state.max_temp > 21:
use_regulator = True
while state.turn < state.max_turns:
state = game_layer.game_state
try: try:
if EMA_temp is None:
EMA_temp = state.current_temp
ema_k_value = (2/(ema_length+1))
EMA_temp = state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value)
take_turn() take_turn()
except: except Exception:
print(traceback.format_exc()) print(traceback.format_exc())
game_layer.end_game() game_layer.end_game()
exit() exit()
time_diff = time.time() - start_time time_diff = time.time() - start_time
if time_diff > timeUntilRunEnds: if time_diff > time_until_run_ends:
game_layer.end_game() game_layer.end_game()
exit() exit()
print("Done with game: " + game_layer.game_state.game_id) print("Done with game: " + state.game_id)
print("Final score was: " + str(game_layer.get_score()["finalScore"])) print("Final score was: " + str(game_layer.get_score()["finalScore"]))
return (state.game_id, game_layer.get_score()["finalScore"])
def linus_take_turn():
freeSpace = []
state = game_layer.game_state
for i in range(len(state.map)-1):
for j in range(len(state.map)-1):
if state.map[i][j] == 0:
freeSpace.append((i,j))
#print(mylist)
if (game_layer.game_state.turn == 0):
game_layer.place_foundation(freeSpace[2], game_layer.game_state.available_residence_buildings[0].building_name)
the_first_residence = state.residences[0]
if the_first_residence.build_progress < 100:
game_layer.build(freeSpace[2])
if len(state.residences)==1:
game_layer.place_foundation(freeSpace[3], game_layer.game_state.available_residence_buildings[4].building_name)
the_second_residence = state.residences[1]
if the_second_residence.build_progress < 100:
game_layer.build(freeSpace[3])
elif the_first_residence.health < 70:
game_layer.maintenance(freeSpace[2])
elif the_second_residence.health < 70:
game_layer.maintenance(freeSpace[3])
elif (the_second_residence.health > 70) and not len(state.utilities) > 0:
game_layer.place_foundation(freeSpace[4], game_layer.game_state.available_utility_buildings[2].building_name)
elif (state.utilities[0].build_progress < 100):
game_layer.build(freeSpace[4])
else:
# messages and errors for console log
game_layer.wait()
for message in game_layer.game_state.messages:
print(message)
for error in game_layer.game_state.errors:
print("Error: " + error)
def take_turn(): def take_turn():
if not usePrebuiltStrategy: global state
# TODO Implement your artificial intelligence here. # TODO Implement your artificial intelligence here.
# TODO Take one action per turn until the game ends. # TODO Take one action per turn until the game ends.
# TODO The following is a short example of how to use the StarterKit # TODO The following is a short example of how to use the StarterKit
if something_needs_attention():
pass
# messages and errors for console log elif develop_society():
for message in game_layer.game_state.messages: pass
print(message)
for error in game_layer.game_state.errors:
print("Error: " + error)
# pre-made test strategy
# which came with
# starter kit
if usePrebuiltStrategy:
state = game_layer.game_state
if len(state.residences) < 1:
for i in range(len(state.map)):
for j in range(len(state.map)):
if state.map[i][j] == 0:
x = i
y = j
break
game_layer.place_foundation((x, y), game_layer.game_state.available_residence_buildings[0].building_name)
else:
the_only_residence = state.residences[0]
if the_only_residence.build_progress < 100:
game_layer.build((the_only_residence.X, the_only_residence.Y))
elif the_only_residence.health < 50:
game_layer.maintenance((the_only_residence.X, the_only_residence.Y))
elif the_only_residence.temperature < 18:
blueprint = game_layer.get_residence_blueprint(the_only_residence.building_name)
energy = blueprint.base_energy_need + 0.5 \
+ (the_only_residence.temperature - state.current_temp) * blueprint.emissivity / 1 \
- the_only_residence.current_pop * 0.04
game_layer.adjust_energy_level((the_only_residence.X, the_only_residence.Y), energy)
elif the_only_residence.temperature > 24:
blueprint = game_layer.get_residence_blueprint(the_only_residence.building_name)
energy = blueprint.base_energy_need - 0.5 \
+ (the_only_residence.temperature - state.current_temp) * blueprint.emissivity / 1 \
- the_only_residence.current_pop * 0.04
game_layer.adjust_energy_level((the_only_residence.X, the_only_residence.Y), energy)
elif state.available_upgrades[0].name not in the_only_residence.effects:
game_layer.buy_upgrade((the_only_residence.X, the_only_residence.Y), state.available_upgrades[0].name)
else: else:
game_layer.wait() game_layer.wait()
for message in game_layer.game_state.messages:
# messages and errors for console log
for message in state.messages:
print(message) print(message)
for error in game_layer.game_state.errors: for error in state.errors:
print("Error: " + error) print("Error: " + error)
def chartMap():
availableTiles = [] def develop_society():
global state, queue_timeout, available_tiles, money_reserve_multiplier
queue_reset = 1
if queue_timeout > 1:
queue_timeout -= 1
best_residence = calculate_best_residence()
best_utility = calculate_best_utility()
best_upgrade = get_best_upgrade()
build_residence_score = 0
build_utility_score = 0
build_upgrade_score = 0
# priority scores, 1 = very urgent, 0 = not urgent at all
if len(state.residences) < 1:
build_residence_score = 1000
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) < 0:
build_residence_score = 0
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) > 15 and queue_timeout <= 0:
build_residence_score = 1000
elif best_residence and best_residence[0] > 0:
build_residence_score = best_residence[0]
#
upgrade_residence_score = 0
#
if best_utility and best_utility[0] > 0:
build_utility_score = best_utility[0]
#
if best_upgrade and best_upgrade[0] > 0:
build_upgrade_score = best_upgrade[0]
decision = [
('build_residence', build_residence_score),
('upgrade_residence', upgrade_residence_score),
('build_utility', build_utility_score),
('build_upgrade', build_upgrade_score)
]
def sort_key(e):
return e[1]
decision.sort(reverse=True, key=sort_key)
print(decision)
if decision[0][1] >= 0:
if decision[0][0] == "build_residence": # build housing
if best_residence:
queue_timeout = queue_reset
if best_residence[2]:
return build_place(best_residence[1], best_residence[2])
else:
return build(best_residence[1])
if decision[0][0] == "build_utility": # build utilities
if best_utility:
return build_place(best_utility[1], best_utility[2])
if decision[0][0] == "upgrade_residence": # upgrade housing
pass
if decision[0][0] == "build_upgrade": # build upgrades
if random.random() < other_upgrade_threshold:
for residence in state.residences:
if state.available_upgrades[0].name not in residence.effects and (money_reserve_multiplier*3500 < state.funds) and ((total_income() - 6) > 50):
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[0].name)
return True
if use_regulator and state.available_upgrades[5].name not in residence.effects and (money_reserve_multiplier*1250 < state.funds):
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[5].name)
return True
if best_upgrade:
game_layer.buy_upgrade((best_upgrade[2].X, best_upgrade[2].Y), best_upgrade[1])
return True
return False
def something_needs_attention():
global building_under_construction, edit_temp, maintain, state, rounds_between_energy
# check if temp needs adjusting
edit_temp = (False, 0)
# check if need for maintenance
maintain = (False, 0)
for i in range(len(state.residences)):
blueprint = game_layer.get_residence_blueprint(state.residences[i].building_name)
if state.residences[i].health < 40+(max(((blueprint.maintenance_cost - state.funds) / (1+total_income())), 1) * blueprint.decay_rate):
maintain = (True, i)
if (state.turn % rounds_between_energy == i) and not state.residences[i].build_progress < 100:
edit_temp = (True, i)
if maintain[0]: # check maintenance
game_layer.maintenance((state.residences[maintain[1]].X, state.residences[maintain[1]].Y))
return True
elif edit_temp[0]: # adjust temp of buildings
return adjust_energy(state.residences[edit_temp[1]])
elif building_under_construction is not None: # finish construction
if (len(state.residences)-1 >= building_under_construction[2]) and (state.residences[building_under_construction[2]].build_progress < 100):
game_layer.build((building_under_construction[0], building_under_construction[1]))
if not state.residences[building_under_construction[2]].build_progress < 100:
building_under_construction = None
return True
elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100):
game_layer.build((building_under_construction[0], building_under_construction[1]))
if not state.utilities[building_under_construction[2]].build_progress < 100:
building_under_construction = None
return True
else:
building_under_construction = None
return False
else:
return False
def max_tot_pop():
global state
max_pop = 0
for residence in state.residences:
max_pop += game_layer.get_blueprint(residence.building_name).max_pop
return max_pop
def current_tot_pop():
global state
current_pop = 0
for residence in state.residences:
current_pop += residence.current_pop
return current_pop
def total_income():
global state
income = 0
for residence in state.residences:
income += game_layer.get_residence_blueprint(residence.building_name).income_per_pop * residence.current_pop
return income
def get_best_upgrade():
global state
best_upgrade = []
for residence in state.residences:
cbu = calculate_best_upgrade(residence)
if cbu is not False:
score = cbu[0]
upgrade = cbu[1]
best_upgrade.append((score, upgrade, residence))
def sort_key(e):
return e[0]
best_upgrade.sort(reverse=True, key=sort_key)
if not best_upgrade:
return False
return best_upgrade[0]
def calculate_best_upgrade(current_building):
global state, money_reserve_multiplier
rounds_left = 700 - state.turn
current_pop = current_building.current_pop
blueprint = game_layer.get_blueprint(current_building.building_name)
base_energy_need = blueprint.base_energy_need
best_upgrade = []
for upgrade in state.available_upgrades:
effect = game_layer.get_effect(upgrade.effect)
if (upgrade.name not in current_building.effects) and ((total_income() + effect.building_income_increase) > 50) and (money_reserve_multiplier*upgrade.cost < state.funds):
average_outdoor_temp = (state.max_temp - state.min_temp)/2
average_heating_energy = max((((21 - average_outdoor_temp) * blueprint.emissivity * effect.emissivity_multiplier) / 0.75), 0)
old_average_heating_energy = max((((21 - average_outdoor_temp) * blueprint.emissivity) / 0.75), 0)
lifetime_energy = (base_energy_need + effect.base_energy_mwh_increase + average_heating_energy - effect.mwh_production) * rounds_left
old_lifetime_energy = (base_energy_need + old_average_heating_energy) * rounds_left
upgrade_co2 = (effect.co2_per_pop_increase + 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
if "Mall.2" in current_building.effects and upgrade.name == "Charger":
upgrade_co2 = (effect.co2_per_pop_increase - 0.009 + 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
old_co2 = 0.03 * current_pop * rounds_left + (0.1 * old_lifetime_energy / 1000)
co2 = upgrade_co2 - old_co2
max_happiness = effect.max_happiness_increase * current_pop * rounds_left
score = max_happiness/10 - co2
# score = score / upgrade.cost
best_upgrade.append((score, upgrade.name))
def sort_key(e):
return e[0]
best_upgrade.sort(reverse=True, key=sort_key)
if not best_upgrade:
return False
return best_upgrade[0]
def calculate_best_utility():
global state, money_reserve_multiplier, round_buffer
best_utility = []
for utility_blueprint in state.available_utility_buildings:
if state.turn >= utility_blueprint.release_tick and (money_reserve_multiplier*utility_blueprint.cost < state.funds):
rounds_left = 700 - state.turn - (100 / utility_blueprint.build_speed) - round_buffer
for i in range(len(available_tiles)):
if isinstance(available_tiles[i], tuple):
score = 0
cost = utility_blueprint.cost
for effect_name in utility_blueprint.effects:
effect = game_layer.get_effect(effect_name)
affected_people = tile_score(available_tiles[i], effect.radius, effect_name)[0]
affected_buildings = tile_score(available_tiles[i], effect.radius, effect_name)[1]
cost -= effect.building_income_increase * rounds_left
happiness_increase = affected_people * effect.max_happiness_increase * rounds_left
co2 = affected_people * effect.co2_per_pop_increase * rounds_left - effect.mwh_production * affected_buildings * rounds_left
score += happiness_increase / 10 - co2
# print(effect_name + " gave score " + str(score))
# score = score / cost
best_utility.append((score, utility_blueprint.building_name, i))
def sort_key(e):
return e[0]
best_utility.sort(reverse=True, key=sort_key)
# print(best_utility)
if not best_utility:
return False
return best_utility[0]
def calculate_best_residence():
global state, money_reserve_multiplier, round_buffer
best_residence = []
for residence_blueprint in state.available_residence_buildings:
if state.turn >= residence_blueprint.release_tick and (money_reserve_multiplier*residence_blueprint.cost < state.funds):
rounds_left = 700 - state.turn - (100 / residence_blueprint.build_speed) - round_buffer
average_outdoor_temp = (state.max_temp - state.min_temp)/2
average_heating_energy = ((0 - 0.04 * residence_blueprint.max_pop + (21 - average_outdoor_temp) * residence_blueprint.emissivity) / 0.75)
lifetime_energy = (residence_blueprint.base_energy_need + average_heating_energy) * rounds_left
distinct_residences = number_of_distinct_residences(residence_blueprint.building_name)
diversity = 1 + distinct_residences[0]/10
co2 = 0.03 * residence_blueprint.max_pop * rounds_left + residence_blueprint.co2_cost + (0.1 * lifetime_energy / 1000)
max_happiness = residence_blueprint.max_happiness * residence_blueprint.max_pop * rounds_left
max_happiness *= diversity
diversity_bonus = 0
if distinct_residences[1]:
happy = 0
for residence in state.residences:
happy += residence.happiness_per_tick_per_pop * residence.current_pop
diversity_bonus = (happy * rounds_left / 10) / 10
score = residence_blueprint.max_pop*15 + max_happiness / 10 - co2 + diversity_bonus
# score = score / residence_blueprint.cost
# calculate tiles near utils
best_foundation_tile = []
for i in range(len(available_tiles)):
tile = available_tiles[i]
if isinstance(tile, tuple):
for utility in state.utilities:
for effect_name in utility.effects:
effect = game_layer.get_effect(effect_name)
delta_x = abs(tile[0] - utility.X)
delta_y = abs(tile[1] - utility.Y)
distance = delta_x + delta_y
if (distance <= effect.radius):
best_foundation_tile.append((distance, i))
def sort_key(e):
return e[0]
best_foundation_tile.sort(key=sort_key)
if best_foundation_tile:
best_residence.append((score, residence_blueprint.building_name, best_foundation_tile[0][1]))
else:
best_residence.append((score, residence_blueprint.building_name, False))
def sort_key(e):
return e[0]
best_residence.sort(reverse=True, key=sort_key)
if not best_residence:
return False
return best_residence[0]
def number_of_distinct_residences(new_building):
global state
unique_names = []
for residence in state.residences:
if residence.building_name not in unique_names:
unique_names.append(residence.building_name)
if new_building not in unique_names:
unique_names.append(new_building)
return len(unique_names), True
return len(unique_names), False
def chart_map():
global state
for x in range(len(state.map) - 1): for x in range(len(state.map) - 1):
for y in range(len(state.map) - 1): for y in range(len(state.map) - 1):
if state.map[x][y] == 0: if state.map[x][y] == 0:
availableTiles.append((x, y)) available_tiles.append((x, y))
optimize_available_tiles()
def tile_score(tile, radius, effect):
global state
affected_people = 0
affected_buildings = 0
# send back # of max people in radius
for residence in state.residences:
delta_x = abs(tile[0] - residence.X)
delta_y = abs(tile[1] - residence.Y)
distance = delta_x + delta_y
if (distance <= radius) and effect not in residence.effects:
affected_people += residence.current_pop
affected_buildings += 1
return affected_people, affected_buildings
def optimize_available_tiles():
average_x = 0
average_y = 0
score_list = []
for tile in available_tiles: # calc average coordinates
average_x += tile[0]
average_y += tile[1]
average_x /= len(available_tiles)
average_y /= len(available_tiles)
for tile in available_tiles:
tile_score = abs(tile[0] - average_x) + abs(tile[1] - average_y)
score_list.append((tile_score, tile))
def sort_key(e):
return e[0]
score_list.sort(key=sort_key)
for i in range(len(score_list)):
available_tiles[i] = score_list[i][1]
def adjust_energy(current_building):
global rounds_between_energy, EMA_temp, state, temp_acc_multiplier
blueprint = game_layer.get_residence_blueprint(current_building.building_name)
base_energy = blueprint.base_energy_need
if "Charger" in current_building.effects:
base_energy += 1.8
emissivity = blueprint.emissivity
if "Insulation" in current_building.effects:
emissivity *= 0.6
out_door_temp = state.current_temp * 2 - EMA_temp
temp_acceleration = (2*(21 - current_building.temperature)/rounds_between_energy) * temp_acc_multiplier
effective_energy_in = ((temp_acceleration - 0.04 * current_building.current_pop + (current_building.temperature - out_door_temp) * emissivity) / 0.75) + base_energy
if effective_energy_in > base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), effective_energy_in)
return True
elif effective_energy_in < base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01)
return True
else:
return False
def build_place(structure, i):
global building_under_construction, rounds_between_energy, state
if isinstance(available_tiles[i], tuple):
game_layer.place_foundation(available_tiles[i], structure)
for j in range(len(state.residences)):
building = state.residences[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
rounds_between_energy = len(state.residences)+2
return True
for j in range(len(state.utilities)):
building = state.utilities[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
return True
return False
def build(structure):
global building_under_construction, rounds_between_energy, state
for i in range(len(available_tiles)):
if isinstance(available_tiles[i], tuple):
game_layer.place_foundation(available_tiles[i], structure)
for j in range(len(state.residences)):
building = state.residences[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
rounds_between_energy = len(state.residences)+2
return True
for j in range(len(state.utilities)):
building = state.utilities[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
return True
return False
return False
if __name__ == "__main__": if __name__ == "__main__":
main() main()