Merge branch 'felix-lek'
This commit is contained in:
commit
5ac717cd7b
8
clearGames.py
Normal file
8
clearGames.py
Normal file
@ -0,0 +1,8 @@
|
||||
from game_layer import GameLayer
|
||||
api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3"
|
||||
game_layer = GameLayer(api_key)
|
||||
def clear_it():
|
||||
game_layer.force_end_game()
|
||||
game_layer.force_end_game()
|
||||
game_layer.force_end_game()
|
||||
game_layer.force_end_game()
|
22
launcher.py
Normal file
22
launcher.py
Normal file
@ -0,0 +1,22 @@
|
||||
import main
|
||||
import clearGames
|
||||
from multiprocessing import Pool
|
||||
|
||||
proc_running = 4 # MAX 4!!!
|
||||
|
||||
|
||||
def run_main(n):
|
||||
result = main.main()
|
||||
return result
|
||||
|
||||
|
||||
def launch(list):
|
||||
for result in list:
|
||||
print("Game " + result[0] + " had a score of: " + str(result[1]))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
clearGames.clear_it()
|
||||
with Pool(proc_running) as p:
|
||||
results = p.map(run_main, range(proc_running))
|
||||
launch(results)
|
549
main.py
549
main.py
@ -3,138 +3,497 @@ import time
|
||||
import sys
|
||||
from sys import exit
|
||||
from game_layer import GameLayer
|
||||
import game_state
|
||||
import traceback
|
||||
import random
|
||||
|
||||
api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3"
|
||||
# The different map names can be found on considition.com/rules
|
||||
map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected.
|
||||
|
||||
game_layer = GameLayer(api_key)
|
||||
state = game_layer.game_state
|
||||
usePrebuiltStrategy = False
|
||||
timeUntilRunEnds = 30
|
||||
# settings
|
||||
use_regulator = False # turns on if map max temp >21c
|
||||
other_upgrade_threshold = 0.5
|
||||
time_until_run_ends = 90
|
||||
money_reserve_multiplier = 0.5
|
||||
temp_acc_multiplier = 1.125
|
||||
rounds_between_energy = 5
|
||||
round_buffer = 78
|
||||
|
||||
# vars
|
||||
EMA_temp = None
|
||||
building_under_construction = None
|
||||
available_tiles = []
|
||||
state = None
|
||||
queue_timeout = 1
|
||||
edit_temp = None
|
||||
maintain = None
|
||||
|
||||
|
||||
def main():
|
||||
global EMA_temp, rounds_between_energy, building_under_construction, available_tiles, state, queue_timeout, use_regulator
|
||||
# global vars
|
||||
rounds_between_energy = 5
|
||||
EMA_temp = None
|
||||
ema_length = 16
|
||||
building_under_construction = None
|
||||
available_tiles = []
|
||||
queue_timeout = 1
|
||||
|
||||
#game_layer.force_end_game()
|
||||
game_layer.new_game(map_name)
|
||||
print("Starting game: " + game_layer.game_state.game_id)
|
||||
game_layer.start_game()
|
||||
# exit game after timeout
|
||||
# start timeout timer
|
||||
start_time = time.time()
|
||||
while game_layer.game_state.turn < game_layer.game_state.max_turns:
|
||||
state = game_layer.game_state
|
||||
chart_map()
|
||||
if state.max_temp > 21:
|
||||
use_regulator = True
|
||||
while state.turn < state.max_turns:
|
||||
state = game_layer.game_state
|
||||
try:
|
||||
if EMA_temp is None:
|
||||
EMA_temp = state.current_temp
|
||||
ema_k_value = (2/(ema_length+1))
|
||||
EMA_temp = state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value)
|
||||
take_turn()
|
||||
except:
|
||||
except Exception:
|
||||
print(traceback.format_exc())
|
||||
game_layer.end_game()
|
||||
exit()
|
||||
time_diff = time.time() - start_time
|
||||
if time_diff > timeUntilRunEnds:
|
||||
if time_diff > time_until_run_ends:
|
||||
game_layer.end_game()
|
||||
exit()
|
||||
print("Done with game: " + game_layer.game_state.game_id)
|
||||
print("Done with game: " + state.game_id)
|
||||
print("Final score was: " + str(game_layer.get_score()["finalScore"]))
|
||||
return (state.game_id, game_layer.get_score()["finalScore"])
|
||||
|
||||
def linus_take_turn():
|
||||
freeSpace = []
|
||||
|
||||
state = game_layer.game_state
|
||||
for i in range(len(state.map)-1):
|
||||
for j in range(len(state.map)-1):
|
||||
if state.map[i][j] == 0:
|
||||
freeSpace.append((i,j))
|
||||
|
||||
#print(mylist)
|
||||
|
||||
if (game_layer.game_state.turn == 0):
|
||||
game_layer.place_foundation(freeSpace[2], game_layer.game_state.available_residence_buildings[0].building_name)
|
||||
the_first_residence = state.residences[0]
|
||||
if the_first_residence.build_progress < 100:
|
||||
game_layer.build(freeSpace[2])
|
||||
if len(state.residences)==1:
|
||||
game_layer.place_foundation(freeSpace[3], game_layer.game_state.available_residence_buildings[4].building_name)
|
||||
the_second_residence = state.residences[1]
|
||||
if the_second_residence.build_progress < 100:
|
||||
game_layer.build(freeSpace[3])
|
||||
elif the_first_residence.health < 70:
|
||||
game_layer.maintenance(freeSpace[2])
|
||||
elif the_second_residence.health < 70:
|
||||
game_layer.maintenance(freeSpace[3])
|
||||
elif (the_second_residence.health > 70) and not len(state.utilities) > 0:
|
||||
game_layer.place_foundation(freeSpace[4], game_layer.game_state.available_utility_buildings[2].building_name)
|
||||
elif (state.utilities[0].build_progress < 100):
|
||||
game_layer.build(freeSpace[4])
|
||||
|
||||
else:
|
||||
# messages and errors for console log
|
||||
game_layer.wait()
|
||||
for message in game_layer.game_state.messages:
|
||||
print(message)
|
||||
for error in game_layer.game_state.errors:
|
||||
print("Error: " + error)
|
||||
|
||||
def take_turn():
|
||||
if not usePrebuiltStrategy:
|
||||
global state
|
||||
# TODO Implement your artificial intelligence here.
|
||||
# TODO Take one action per turn until the game ends.
|
||||
# TODO The following is a short example of how to use the StarterKit
|
||||
|
||||
|
||||
# messages and errors for console log
|
||||
for message in game_layer.game_state.messages:
|
||||
print(message)
|
||||
for error in game_layer.game_state.errors:
|
||||
print("Error: " + error)
|
||||
|
||||
|
||||
# pre-made test strategy
|
||||
# which came with
|
||||
# starter kit
|
||||
if usePrebuiltStrategy:
|
||||
state = game_layer.game_state
|
||||
if len(state.residences) < 1:
|
||||
for i in range(len(state.map)):
|
||||
for j in range(len(state.map)):
|
||||
if state.map[i][j] == 0:
|
||||
x = i
|
||||
y = j
|
||||
break
|
||||
game_layer.place_foundation((x, y), game_layer.game_state.available_residence_buildings[0].building_name)
|
||||
else:
|
||||
the_only_residence = state.residences[0]
|
||||
if the_only_residence.build_progress < 100:
|
||||
game_layer.build((the_only_residence.X, the_only_residence.Y))
|
||||
elif the_only_residence.health < 50:
|
||||
game_layer.maintenance((the_only_residence.X, the_only_residence.Y))
|
||||
elif the_only_residence.temperature < 18:
|
||||
blueprint = game_layer.get_residence_blueprint(the_only_residence.building_name)
|
||||
energy = blueprint.base_energy_need + 0.5 \
|
||||
+ (the_only_residence.temperature - state.current_temp) * blueprint.emissivity / 1 \
|
||||
- the_only_residence.current_pop * 0.04
|
||||
game_layer.adjust_energy_level((the_only_residence.X, the_only_residence.Y), energy)
|
||||
elif the_only_residence.temperature > 24:
|
||||
blueprint = game_layer.get_residence_blueprint(the_only_residence.building_name)
|
||||
energy = blueprint.base_energy_need - 0.5 \
|
||||
+ (the_only_residence.temperature - state.current_temp) * blueprint.emissivity / 1 \
|
||||
- the_only_residence.current_pop * 0.04
|
||||
game_layer.adjust_energy_level((the_only_residence.X, the_only_residence.Y), energy)
|
||||
elif state.available_upgrades[0].name not in the_only_residence.effects:
|
||||
game_layer.buy_upgrade((the_only_residence.X, the_only_residence.Y), state.available_upgrades[0].name)
|
||||
if something_needs_attention():
|
||||
pass
|
||||
elif develop_society():
|
||||
pass
|
||||
else:
|
||||
game_layer.wait()
|
||||
for message in game_layer.game_state.messages:
|
||||
|
||||
# messages and errors for console log
|
||||
for message in state.messages:
|
||||
print(message)
|
||||
for error in game_layer.game_state.errors:
|
||||
for error in state.errors:
|
||||
print("Error: " + error)
|
||||
|
||||
def chartMap():
|
||||
availableTiles = []
|
||||
|
||||
def develop_society():
|
||||
global state, queue_timeout, available_tiles, money_reserve_multiplier
|
||||
queue_reset = 1
|
||||
if queue_timeout > 1:
|
||||
queue_timeout -= 1
|
||||
|
||||
best_residence = calculate_best_residence()
|
||||
best_utility = calculate_best_utility()
|
||||
best_upgrade = get_best_upgrade()
|
||||
build_residence_score = 0
|
||||
build_utility_score = 0
|
||||
build_upgrade_score = 0
|
||||
# priority scores, 1 = very urgent, 0 = not urgent at all
|
||||
if len(state.residences) < 1:
|
||||
build_residence_score = 1000
|
||||
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) < 0:
|
||||
build_residence_score = 0
|
||||
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) > 15 and queue_timeout <= 0:
|
||||
build_residence_score = 1000
|
||||
elif best_residence and best_residence[0] > 0:
|
||||
build_residence_score = best_residence[0]
|
||||
#
|
||||
upgrade_residence_score = 0
|
||||
#
|
||||
if best_utility and best_utility[0] > 0:
|
||||
build_utility_score = best_utility[0]
|
||||
#
|
||||
if best_upgrade and best_upgrade[0] > 0:
|
||||
build_upgrade_score = best_upgrade[0]
|
||||
|
||||
decision = [
|
||||
('build_residence', build_residence_score),
|
||||
('upgrade_residence', upgrade_residence_score),
|
||||
('build_utility', build_utility_score),
|
||||
('build_upgrade', build_upgrade_score)
|
||||
]
|
||||
|
||||
def sort_key(e):
|
||||
return e[1]
|
||||
decision.sort(reverse=True, key=sort_key)
|
||||
print(decision)
|
||||
|
||||
if decision[0][1] >= 0:
|
||||
if decision[0][0] == "build_residence": # build housing
|
||||
if best_residence:
|
||||
queue_timeout = queue_reset
|
||||
if best_residence[2]:
|
||||
return build_place(best_residence[1], best_residence[2])
|
||||
else:
|
||||
return build(best_residence[1])
|
||||
if decision[0][0] == "build_utility": # build utilities
|
||||
if best_utility:
|
||||
return build_place(best_utility[1], best_utility[2])
|
||||
if decision[0][0] == "upgrade_residence": # upgrade housing
|
||||
pass
|
||||
if decision[0][0] == "build_upgrade": # build upgrades
|
||||
if random.random() < other_upgrade_threshold:
|
||||
for residence in state.residences:
|
||||
if state.available_upgrades[0].name not in residence.effects and (money_reserve_multiplier*3500 < state.funds) and ((total_income() - 6) > 50):
|
||||
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[0].name)
|
||||
return True
|
||||
if use_regulator and state.available_upgrades[5].name not in residence.effects and (money_reserve_multiplier*1250 < state.funds):
|
||||
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[5].name)
|
||||
return True
|
||||
if best_upgrade:
|
||||
game_layer.buy_upgrade((best_upgrade[2].X, best_upgrade[2].Y), best_upgrade[1])
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def something_needs_attention():
|
||||
global building_under_construction, edit_temp, maintain, state, rounds_between_energy
|
||||
|
||||
# check if temp needs adjusting
|
||||
edit_temp = (False, 0)
|
||||
# check if need for maintenance
|
||||
maintain = (False, 0)
|
||||
for i in range(len(state.residences)):
|
||||
blueprint = game_layer.get_residence_blueprint(state.residences[i].building_name)
|
||||
if state.residences[i].health < 40+(max(((blueprint.maintenance_cost - state.funds) / (1+total_income())), 1) * blueprint.decay_rate):
|
||||
maintain = (True, i)
|
||||
if (state.turn % rounds_between_energy == i) and not state.residences[i].build_progress < 100:
|
||||
edit_temp = (True, i)
|
||||
|
||||
if maintain[0]: # check maintenance
|
||||
game_layer.maintenance((state.residences[maintain[1]].X, state.residences[maintain[1]].Y))
|
||||
return True
|
||||
elif edit_temp[0]: # adjust temp of buildings
|
||||
return adjust_energy(state.residences[edit_temp[1]])
|
||||
elif building_under_construction is not None: # finish construction
|
||||
if (len(state.residences)-1 >= building_under_construction[2]) and (state.residences[building_under_construction[2]].build_progress < 100):
|
||||
game_layer.build((building_under_construction[0], building_under_construction[1]))
|
||||
if not state.residences[building_under_construction[2]].build_progress < 100:
|
||||
building_under_construction = None
|
||||
return True
|
||||
elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100):
|
||||
game_layer.build((building_under_construction[0], building_under_construction[1]))
|
||||
if not state.utilities[building_under_construction[2]].build_progress < 100:
|
||||
building_under_construction = None
|
||||
return True
|
||||
else:
|
||||
building_under_construction = None
|
||||
return False
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def max_tot_pop():
|
||||
global state
|
||||
max_pop = 0
|
||||
for residence in state.residences:
|
||||
max_pop += game_layer.get_blueprint(residence.building_name).max_pop
|
||||
return max_pop
|
||||
|
||||
|
||||
def current_tot_pop():
|
||||
global state
|
||||
current_pop = 0
|
||||
for residence in state.residences:
|
||||
current_pop += residence.current_pop
|
||||
return current_pop
|
||||
|
||||
|
||||
def total_income():
|
||||
global state
|
||||
income = 0
|
||||
for residence in state.residences:
|
||||
income += game_layer.get_residence_blueprint(residence.building_name).income_per_pop * residence.current_pop
|
||||
return income
|
||||
|
||||
|
||||
def get_best_upgrade():
|
||||
global state
|
||||
|
||||
best_upgrade = []
|
||||
for residence in state.residences:
|
||||
cbu = calculate_best_upgrade(residence)
|
||||
if cbu is not False:
|
||||
score = cbu[0]
|
||||
upgrade = cbu[1]
|
||||
best_upgrade.append((score, upgrade, residence))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_upgrade.sort(reverse=True, key=sort_key)
|
||||
if not best_upgrade:
|
||||
return False
|
||||
return best_upgrade[0]
|
||||
|
||||
|
||||
def calculate_best_upgrade(current_building):
|
||||
global state, money_reserve_multiplier
|
||||
|
||||
rounds_left = 700 - state.turn
|
||||
current_pop = current_building.current_pop
|
||||
blueprint = game_layer.get_blueprint(current_building.building_name)
|
||||
base_energy_need = blueprint.base_energy_need
|
||||
best_upgrade = []
|
||||
for upgrade in state.available_upgrades:
|
||||
effect = game_layer.get_effect(upgrade.effect)
|
||||
if (upgrade.name not in current_building.effects) and ((total_income() + effect.building_income_increase) > 50) and (money_reserve_multiplier*upgrade.cost < state.funds):
|
||||
average_outdoor_temp = (state.max_temp - state.min_temp)/2
|
||||
|
||||
average_heating_energy = max((((21 - average_outdoor_temp) * blueprint.emissivity * effect.emissivity_multiplier) / 0.75), 0)
|
||||
old_average_heating_energy = max((((21 - average_outdoor_temp) * blueprint.emissivity) / 0.75), 0)
|
||||
|
||||
lifetime_energy = (base_energy_need + effect.base_energy_mwh_increase + average_heating_energy - effect.mwh_production) * rounds_left
|
||||
old_lifetime_energy = (base_energy_need + old_average_heating_energy) * rounds_left
|
||||
|
||||
upgrade_co2 = (effect.co2_per_pop_increase + 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
|
||||
if "Mall.2" in current_building.effects and upgrade.name == "Charger":
|
||||
upgrade_co2 = (effect.co2_per_pop_increase - 0.009 + 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
|
||||
old_co2 = 0.03 * current_pop * rounds_left + (0.1 * old_lifetime_energy / 1000)
|
||||
co2 = upgrade_co2 - old_co2
|
||||
max_happiness = effect.max_happiness_increase * current_pop * rounds_left
|
||||
score = max_happiness/10 - co2
|
||||
# score = score / upgrade.cost
|
||||
best_upgrade.append((score, upgrade.name))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_upgrade.sort(reverse=True, key=sort_key)
|
||||
if not best_upgrade:
|
||||
return False
|
||||
return best_upgrade[0]
|
||||
|
||||
|
||||
def calculate_best_utility():
|
||||
global state, money_reserve_multiplier, round_buffer
|
||||
|
||||
best_utility = []
|
||||
for utility_blueprint in state.available_utility_buildings:
|
||||
if state.turn >= utility_blueprint.release_tick and (money_reserve_multiplier*utility_blueprint.cost < state.funds):
|
||||
rounds_left = 700 - state.turn - (100 / utility_blueprint.build_speed) - round_buffer
|
||||
|
||||
for i in range(len(available_tiles)):
|
||||
if isinstance(available_tiles[i], tuple):
|
||||
score = 0
|
||||
cost = utility_blueprint.cost
|
||||
for effect_name in utility_blueprint.effects:
|
||||
effect = game_layer.get_effect(effect_name)
|
||||
affected_people = tile_score(available_tiles[i], effect.radius, effect_name)[0]
|
||||
affected_buildings = tile_score(available_tiles[i], effect.radius, effect_name)[1]
|
||||
cost -= effect.building_income_increase * rounds_left
|
||||
happiness_increase = affected_people * effect.max_happiness_increase * rounds_left
|
||||
co2 = affected_people * effect.co2_per_pop_increase * rounds_left - effect.mwh_production * affected_buildings * rounds_left
|
||||
score += happiness_increase / 10 - co2
|
||||
# print(effect_name + " gave score " + str(score))
|
||||
# score = score / cost
|
||||
best_utility.append((score, utility_blueprint.building_name, i))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_utility.sort(reverse=True, key=sort_key)
|
||||
# print(best_utility)
|
||||
if not best_utility:
|
||||
return False
|
||||
return best_utility[0]
|
||||
|
||||
|
||||
def calculate_best_residence():
|
||||
global state, money_reserve_multiplier, round_buffer
|
||||
|
||||
best_residence = []
|
||||
for residence_blueprint in state.available_residence_buildings:
|
||||
if state.turn >= residence_blueprint.release_tick and (money_reserve_multiplier*residence_blueprint.cost < state.funds):
|
||||
rounds_left = 700 - state.turn - (100 / residence_blueprint.build_speed) - round_buffer
|
||||
|
||||
average_outdoor_temp = (state.max_temp - state.min_temp)/2
|
||||
average_heating_energy = ((0 - 0.04 * residence_blueprint.max_pop + (21 - average_outdoor_temp) * residence_blueprint.emissivity) / 0.75)
|
||||
lifetime_energy = (residence_blueprint.base_energy_need + average_heating_energy) * rounds_left
|
||||
|
||||
distinct_residences = number_of_distinct_residences(residence_blueprint.building_name)
|
||||
diversity = 1 + distinct_residences[0]/10
|
||||
|
||||
co2 = 0.03 * residence_blueprint.max_pop * rounds_left + residence_blueprint.co2_cost + (0.1 * lifetime_energy / 1000)
|
||||
max_happiness = residence_blueprint.max_happiness * residence_blueprint.max_pop * rounds_left
|
||||
max_happiness *= diversity
|
||||
|
||||
diversity_bonus = 0
|
||||
if distinct_residences[1]:
|
||||
happy = 0
|
||||
for residence in state.residences:
|
||||
happy += residence.happiness_per_tick_per_pop * residence.current_pop
|
||||
diversity_bonus = (happy * rounds_left / 10) / 10
|
||||
|
||||
score = residence_blueprint.max_pop*15 + max_happiness / 10 - co2 + diversity_bonus
|
||||
# score = score / residence_blueprint.cost
|
||||
|
||||
# calculate tiles near utils
|
||||
best_foundation_tile = []
|
||||
for i in range(len(available_tiles)):
|
||||
tile = available_tiles[i]
|
||||
if isinstance(tile, tuple):
|
||||
for utility in state.utilities:
|
||||
for effect_name in utility.effects:
|
||||
effect = game_layer.get_effect(effect_name)
|
||||
delta_x = abs(tile[0] - utility.X)
|
||||
delta_y = abs(tile[1] - utility.Y)
|
||||
distance = delta_x + delta_y
|
||||
if (distance <= effect.radius):
|
||||
best_foundation_tile.append((distance, i))
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_foundation_tile.sort(key=sort_key)
|
||||
if best_foundation_tile:
|
||||
best_residence.append((score, residence_blueprint.building_name, best_foundation_tile[0][1]))
|
||||
else:
|
||||
best_residence.append((score, residence_blueprint.building_name, False))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_residence.sort(reverse=True, key=sort_key)
|
||||
if not best_residence:
|
||||
return False
|
||||
return best_residence[0]
|
||||
|
||||
|
||||
def number_of_distinct_residences(new_building):
|
||||
global state
|
||||
unique_names = []
|
||||
for residence in state.residences:
|
||||
if residence.building_name not in unique_names:
|
||||
unique_names.append(residence.building_name)
|
||||
if new_building not in unique_names:
|
||||
unique_names.append(new_building)
|
||||
return len(unique_names), True
|
||||
return len(unique_names), False
|
||||
|
||||
|
||||
def chart_map():
|
||||
global state
|
||||
for x in range(len(state.map) - 1):
|
||||
for y in range(len(state.map) - 1):
|
||||
if state.map[x][y] == 0:
|
||||
availableTiles.append((x, y))
|
||||
available_tiles.append((x, y))
|
||||
optimize_available_tiles()
|
||||
|
||||
|
||||
def tile_score(tile, radius, effect):
|
||||
global state
|
||||
affected_people = 0
|
||||
affected_buildings = 0
|
||||
# send back # of max people in radius
|
||||
for residence in state.residences:
|
||||
delta_x = abs(tile[0] - residence.X)
|
||||
delta_y = abs(tile[1] - residence.Y)
|
||||
distance = delta_x + delta_y
|
||||
if (distance <= radius) and effect not in residence.effects:
|
||||
affected_people += residence.current_pop
|
||||
affected_buildings += 1
|
||||
return affected_people, affected_buildings
|
||||
|
||||
|
||||
def optimize_available_tiles():
|
||||
average_x = 0
|
||||
average_y = 0
|
||||
score_list = []
|
||||
for tile in available_tiles: # calc average coordinates
|
||||
average_x += tile[0]
|
||||
average_y += tile[1]
|
||||
average_x /= len(available_tiles)
|
||||
average_y /= len(available_tiles)
|
||||
for tile in available_tiles:
|
||||
tile_score = abs(tile[0] - average_x) + abs(tile[1] - average_y)
|
||||
score_list.append((tile_score, tile))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
score_list.sort(key=sort_key)
|
||||
for i in range(len(score_list)):
|
||||
available_tiles[i] = score_list[i][1]
|
||||
|
||||
|
||||
def adjust_energy(current_building):
|
||||
global rounds_between_energy, EMA_temp, state, temp_acc_multiplier
|
||||
blueprint = game_layer.get_residence_blueprint(current_building.building_name)
|
||||
base_energy = blueprint.base_energy_need
|
||||
if "Charger" in current_building.effects:
|
||||
base_energy += 1.8
|
||||
|
||||
emissivity = blueprint.emissivity
|
||||
if "Insulation" in current_building.effects:
|
||||
emissivity *= 0.6
|
||||
|
||||
out_door_temp = state.current_temp * 2 - EMA_temp
|
||||
temp_acceleration = (2*(21 - current_building.temperature)/rounds_between_energy) * temp_acc_multiplier
|
||||
|
||||
effective_energy_in = ((temp_acceleration - 0.04 * current_building.current_pop + (current_building.temperature - out_door_temp) * emissivity) / 0.75) + base_energy
|
||||
|
||||
if effective_energy_in > base_energy:
|
||||
game_layer.adjust_energy_level((current_building.X, current_building.Y), effective_energy_in)
|
||||
return True
|
||||
elif effective_energy_in < base_energy:
|
||||
game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01)
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def build_place(structure, i):
|
||||
global building_under_construction, rounds_between_energy, state
|
||||
if isinstance(available_tiles[i], tuple):
|
||||
game_layer.place_foundation(available_tiles[i], structure)
|
||||
for j in range(len(state.residences)):
|
||||
building = state.residences[j]
|
||||
coords_to_check = (building.X, building.Y)
|
||||
if coords_to_check == available_tiles[i]:
|
||||
available_tiles[i] = building
|
||||
building_under_construction = (building.X, building.Y, j)
|
||||
rounds_between_energy = len(state.residences)+2
|
||||
return True
|
||||
for j in range(len(state.utilities)):
|
||||
building = state.utilities[j]
|
||||
coords_to_check = (building.X, building.Y)
|
||||
if coords_to_check == available_tiles[i]:
|
||||
available_tiles[i] = building
|
||||
building_under_construction = (building.X, building.Y, j)
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def build(structure):
|
||||
global building_under_construction, rounds_between_energy, state
|
||||
for i in range(len(available_tiles)):
|
||||
if isinstance(available_tiles[i], tuple):
|
||||
game_layer.place_foundation(available_tiles[i], structure)
|
||||
for j in range(len(state.residences)):
|
||||
building = state.residences[j]
|
||||
coords_to_check = (building.X, building.Y)
|
||||
if coords_to_check == available_tiles[i]:
|
||||
available_tiles[i] = building
|
||||
building_under_construction = (building.X, building.Y, j)
|
||||
rounds_between_energy = len(state.residences)+2
|
||||
return True
|
||||
for j in range(len(state.utilities)):
|
||||
building = state.utilities[j]
|
||||
coords_to_check = (building.X, building.Y)
|
||||
if coords_to_check == available_tiles[i]:
|
||||
available_tiles[i] = building
|
||||
building_under_construction = (building.X, building.Y, j)
|
||||
return True
|
||||
return False
|
||||
return False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Reference in New Issue
Block a user