Compare commits

..

2 Commits

Author SHA1 Message Date
linhara
b80df9cd4f PID logic completed but not implemented, constants need tuning 2020-10-07 00:46:35 +02:00
linhara
29e4a43f63 Auto stash before merge of "linus" and "origin/felix-lek" 2020-10-04 15:43:04 +02:00
3 changed files with 302 additions and 261 deletions

View File

@ -1,8 +1,8 @@
from game_layer import GameLayer from game_layer import GameLayer
api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3" api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3"
game_layer = GameLayer(api_key) game_layer = GameLayer(api_key)
def clear_it(): state = game_layer.game_state
game_layer.force_end_game() game_layer.force_end_game()
game_layer.force_end_game() game_layer.force_end_game()
game_layer.force_end_game() game_layer.force_end_game()
game_layer.force_end_game() game_layer.force_end_game()

View File

@ -1,22 +0,0 @@
import main
import clearGames
from multiprocessing import Pool
proc_running = 4 # MAX 4!!!
def run_main(n):
result = main.main()
return result
def launch(list):
for result in list:
print("Game " + result[0] + " had a score of: " + str(result[1]))
if __name__ == '__main__':
clearGames.clear_it()
with Pool(proc_running) as p:
results = p.map(run_main, range(proc_running))
launch(results)

531
main.py
View File

@ -5,41 +5,31 @@ from sys import exit
from game_layer import GameLayer from game_layer import GameLayer
import game_state import game_state
import traceback import traceback
import random
api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3" api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3"
# The different map names can be found on considition.com/rules # The different map names can be found on considition.com/rules
map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected. map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected.
game_layer = GameLayer(api_key) game_layer = GameLayer(api_key)
# settings # settings
use_regulator = False # turns on if map max temp >21c time_until_run_ends = 70
other_upgrade_threshold = 0.5 utilities = 3
time_until_run_ends = 90 money_reserve_multiplier = 1.5
money_reserve_multiplier = 0.5 desiredTemperature = 21
temp_acc_multiplier = 1.125 #logresidence[i][x] = temperatur nr X i byggnad med index i (andra byggnaden), samma i som state.residences
rounds_between_energy = 5 logResidenceInfo = []
round_buffer = 78 PID_Ivalues = []
# vars
EMA_temp = None
building_under_construction = None
available_tiles = []
state = None
queue_timeout = 1
edit_temp = None
maintain = None
def main(): def main():
global EMA_temp, rounds_between_energy, building_under_construction, available_tiles, state, queue_timeout, use_regulator global EMA_temp, rounds_between_energy, building_under_construction, available_tiles, state, queue_timeout
# global vars # global vars
rounds_between_energy = 5 rounds_between_energy = 5
EMA_temp = None EMA_temp = None
ema_length = 16
building_under_construction = None building_under_construction = None
available_tiles = [] available_tiles = []
queue_timeout = 1 queue_timeout = 1
game_layer.new_game(map_name) game_layer.new_game(map_name)
print("Starting game: " + game_layer.game_state.game_id) print("Starting game: " + game_layer.game_state.game_id)
game_layer.start_game() game_layer.start_game()
@ -47,16 +37,16 @@ def main():
start_time = time.time() start_time = time.time()
state = game_layer.game_state state = game_layer.game_state
chart_map() chart_map()
if state.max_temp > 21:
use_regulator = True
while state.turn < state.max_turns: while state.turn < state.max_turns:
state = game_layer.game_state state = game_layer.game_state
try: try:
if EMA_temp is None: if EMA_temp is None:
EMA_temp = state.current_temp EMA_temp = state.current_temp
ema_k_value = (2/(ema_length+1)) ema_k_value = (2/(rounds_between_energy+1))
EMA_temp = state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value) EMA_temp = state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value)
take_turn() take_turn()
recordTempHistories(state.residences)
except Exception: except Exception:
print(traceback.format_exc()) print(traceback.format_exc())
game_layer.end_game() game_layer.end_game()
@ -88,36 +78,136 @@ def take_turn():
for error in state.errors: for error in state.errors:
print("Error: " + error) print("Error: " + error)
#if (i == 0 or i%5 == 0)and i<26:
# game_layer.place_foundation(freeSpace[(i//5)+2], game_layer.game_state.available_residence_buildings[i//5].building_name)
'''
if (game_layer.game_state.turn == 0):
game_layer.place_foundation(freeSpace[2], game_layer.game_state.available_residence_buildings[0].building_name)
the_first_residence = state.residences[0]
if the_first_residence.build_progress < 100:
game_layer.build(freeSpace[2])
if len(state.residences) == 1:
game_layer.place_foundation(freeSpace[3], game_layer.game_state.available_residence_buildings[5].building_name)
the_second_residence = state.residences[1]
if the_second_residence.build_progress < 100:
game_layer.build(freeSpace[3])
if len(state.residences) == 2:
game_layer.place_foundation(freeSpace[5], game_layer.game_state.available_residence_buildings[1].building_name)
the_third_residence = state.residences[2]
if the_third_residence.build_progress < 100:
game_layer.build(freeSpace[5])
if len(state.residences) == 3:
game_layer.place_foundation((4,4), game_layer.game_state.available_residence_buildings[4].building_name)
the_fourth_residence = state.residences[3]
if the_fourth_residence.build_progress < 100:
game_layer.build((4,4))
if len(state.residences) == 4:
game_layer.place_foundation((4,5), game_layer.game_state.available_residence_buildings[3].building_name)
the_fifth_residence = state.residences[4]
if the_fifth_residence.build_progress < 100:
game_layer.build((4,5))
if len(state.residences) == 5:
game_layer.place_foundation((4,6), game_layer.game_state.available_residence_buildings[4].building_name)
the_sixth_residence = state.residences[5]
if (the_sixth_residence.build_progress < 100) and game_layer.game_state.funds > 4000:
game_layer.build((4,6))
for i in range(len(state.residences)):
if state.residences[i].health < 45:
game_layer.maintenance(state.residences[i].X, state.residences[i].Y)
for i in range(len(state.residences)):
if game_layer.game_state.turn % ROUNDVARIABLE == i:
adjustEnergy(the_first_residence)
elif the_first_residence.health < :
game_layer.maintenance(freeSpace[2])
elif the_second_residence.health < 70:
game_layer.maintenance(freeSpace[3])
elif the_third_residence.health < 70:
game_layer.maintenance(freeSpace[5])
elif the_fourth_residence.health < 70:
game_layer.maintenance((4,4))
elif the_fifth_residence.health < 70:
game_layer.maintenance((4,5))
elif the_sixth_residence.health < 70:
game_layer.maintenance((4,6))
elif (the_second_residence.health > 70) and not len(state.utilities) > 0:
game_layer.place_foundation(freeSpace[4], game_layer.game_state.available_utility_buildings[2].building_name)
elif (state.utilities[0].build_progress < 100):
game_layer.build(freeSpace[4])
#elif (game_layer.game_state.turn > 35) and not len(state.utilities) > 1:
# game_layer.place_foundation((4,6), game_layer.game_state.available_utility_buildings[1].building_name)
#elif (state.utilities[1].build_progress < 100):
# game_layer.build((4,6))
elif (game_layer.game_state.turn % rounds_between_energy == 0):
adjustEnergy(the_first_residence)
elif (game_layer.game_state.turn % rounds_between_energy == 1):
adjustEnergy(the_second_residence)
elif (game_layer.game_state.turn % rounds_between_energy == 2):
adjustEnergy(the_third_residence)
elif (game_layer.game_state.turn % rounds_between_energy == 3):
adjustEnergy(the_fourth_residence)
elif (game_layer.game_state.turn % rounds_between_energy == 4):
adjustEnergy(the_fifth_residence)
elif (game_layer.game_state.turn % rounds_between_energy == 5):
adjustEnergy(the_sixth_residence)
else:
the_only_residence = state.residences[0]
if the_only_residence.build_progress < 100:
game_layer.build((the_only_residence.X, the_only_residence.Y))
elif the_only_residence.health < 50:
game_layer.maintenance((the_only_residence.X, the_only_residence.Y))
elif the_only_residence.temperature < 18:
blueprint = game_layer.get_residence_blueprint(the_only_residence.building_name)
energy = blueprint.base_energy_need + 0.5 \
+ (the_only_residence.temperature - state.current_temp) * blueprint.emissivity / 1 \
- the_only_residence.current_pop * 0.04
game_layer.adjust_energy_level((the_only_residence.X, the_only_residence.Y), energy)
elif the_only_residence.temperature > 24:
blueprint = game_layer.get_residence_blueprint(the_only_residence.building_name)
energy = blueprint.base_energy_need - 0.5 \
+ (the_only_residence.temperature - state.current_temp) * blueprint.emissivity / 1 \
- the_only_residence.current_pop * 0.04
game_layer.adjust_energy_level((the_only_residence.X, the_only_residence.Y), energy)
elif state.available_upgrades[0].name not in the_only_residence.effects:
game_layer.buy_upgrade((the_only_residence.X, the_only_residence.Y), state.available_upgrades[0].name)
else:
game_layer.wait()
for message in game_layer.game_state.messages:
print(message)
for error in game_layer.game_state.errors:
print("Error: " + error)
'''
def develop_society(): def develop_society():
global state, queue_timeout, available_tiles, money_reserve_multiplier global state, queue_timeout, available_tiles, utilities
queue_reset = 1
if queue_timeout > 1: if queue_timeout > 1:
queue_timeout -= 1 queue_timeout -= 1
best_residence = calculate_best_residence()
best_utility = calculate_best_utility()
best_upgrade = get_best_upgrade()
build_residence_score = 0
build_utility_score = 0
build_upgrade_score = 0
# priority scores, 1 = very urgent, 0 = not urgent at all # priority scores, 1 = very urgent, 0 = not urgent at all
if len(state.residences) < 1: # queue modifier * funds modifier * existing houses modifier
build_residence_score = 1000 build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (1 - (7500 / (1 + state.funds))) * (1 - (len(state.residences) / (1 + len(available_tiles) - utilities)))
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) < 0:
build_residence_score = 0
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) > 15 and queue_timeout <= 0:
build_residence_score = 1000
elif best_residence and best_residence[0] > 0:
build_residence_score = best_residence[0]
#
upgrade_residence_score = 0 upgrade_residence_score = 0
# # existing houses modifier * funds modifier * existing utilities modifier
if best_utility and best_utility[0] > 0: build_utility_score = (len(state.residences) / (1 + len(available_tiles)-utilities)) * (1 - (16000 / (1 + state.funds))) * (1 - (len(state.utilities) / utilities))
build_utility_score = best_utility[0] # turn modifier * funds modifier
# build_upgrade_score = (1 - (state.turn / 700)) * (2 - (15000 / (1 + state.funds)))
if best_upgrade and best_upgrade[0] > 0:
build_upgrade_score = best_upgrade[0] if len(state.residences) < 1:
build_residence_score = 100
decision = [ decision = [
('build_residence', build_residence_score), ('build_residence', build_residence_score),
@ -125,40 +215,42 @@ def develop_society():
('build_utility', build_utility_score), ('build_utility', build_utility_score),
('build_upgrade', build_upgrade_score) ('build_upgrade', build_upgrade_score)
] ]
def sort_key(e): def sort_key(e):
return e[1] return e[1]
decision.sort(reverse=True, key=sort_key) decision.sort(reverse=True, key=sort_key)
print(decision)
if decision[0][1] >= 0: for i in range(4):
if decision[0][0] == "build_residence": # build housing if decision[0][0] == "build_residence": # build housing
if best_residence: queue_timeout = 5
queue_timeout = queue_reset #if len(state.residences) < len(state.available_residence_buildings):
if best_residence[2]: # return build(state.available_residence_buildings[len(state.residences)].building_name)
return build_place(best_residence[1], best_residence[2]) #else:
else: cbr = calculate_best_residence()
return build(best_residence[1]) if cbr:
return build(cbr[1])
if decision[0][0] == "build_utility": # build utilities if decision[0][0] == "build_utility": # build utilities
if best_utility: #return build("WindTurbine")
return build_place(best_utility[1], best_utility[2]) pass
if decision[0][0] == "upgrade_residence": # upgrade housing if decision[0][0] == "upgrade_residence": # build utilities
pass pass
if decision[0][0] == "build_upgrade": # build upgrades if decision[0][0] == "build_upgrade": # build upgrades
if random.random() < other_upgrade_threshold: for residence in state.residences:
for residence in state.residences: if state.available_upgrades[0].name not in residence.effects and (money_reserve_multiplier*3500 < state.funds) and ((total_income() - 6) > 50):
if state.available_upgrades[0].name not in residence.effects and (money_reserve_multiplier*3500 < state.funds) and ((total_income() - 6) > 50): game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[0].name)
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[0].name) return True
return True if state.available_upgrades[5].name not in residence.effects and (money_reserve_multiplier*1250 < state.funds):
if use_regulator and state.available_upgrades[5].name not in residence.effects and (money_reserve_multiplier*1250 < state.funds): game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[5].name)
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[5].name) return True
return True gbp = get_best_upgrade()
if best_upgrade: if gbp:
game_layer.buy_upgrade((best_upgrade[2].X, best_upgrade[2].Y), best_upgrade[1]) game_layer.buy_upgrade((gbp[2].X, gbp[2].Y), gbp[1])
return True return True
del decision[0]
return False return False
def something_needs_attention(): def something_needs_attention():
global building_under_construction, edit_temp, maintain, state, rounds_between_energy global building_under_construction, edit_temp, maintain, state, rounds_between_energy
@ -167,8 +259,7 @@ def something_needs_attention():
# check if need for maintenance # check if need for maintenance
maintain = (False, 0) maintain = (False, 0)
for i in range(len(state.residences)): for i in range(len(state.residences)):
blueprint = game_layer.get_residence_blueprint(state.residences[i].building_name) if state.residences[i].health < 35+rounds_between_energy*game_layer.get_residence_blueprint(state.residences[i].building_name).decay_rate:
if state.residences[i].health < 40+(max(((blueprint.maintenance_cost - state.funds) / (1+total_income())), 1) * blueprint.decay_rate):
maintain = (True, i) maintain = (True, i)
if (state.turn % rounds_between_energy == i) and not state.residences[i].build_progress < 100: if (state.turn % rounds_between_energy == i) and not state.residences[i].build_progress < 100:
edit_temp = (True, i) edit_temp = (True, i)
@ -186,7 +277,7 @@ def something_needs_attention():
return True return True
elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100): elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100):
game_layer.build((building_under_construction[0], building_under_construction[1])) game_layer.build((building_under_construction[0], building_under_construction[1]))
if not state.utilities[building_under_construction[2]].build_progress < 100: if not state.residences[building_under_construction[2]].build_progress < 100:
building_under_construction = None building_under_construction = None
return True return True
else: else:
@ -196,22 +287,6 @@ def something_needs_attention():
return False return False
def max_tot_pop():
global state
max_pop = 0
for residence in state.residences:
max_pop += game_layer.get_blueprint(residence.building_name).max_pop
return max_pop
def current_tot_pop():
global state
current_pop = 0
for residence in state.residences:
current_pop += residence.current_pop
return current_pop
def total_income(): def total_income():
global state global state
income = 0 income = 0
@ -240,7 +315,7 @@ def get_best_upgrade():
def calculate_best_upgrade(current_building): def calculate_best_upgrade(current_building):
global state, money_reserve_multiplier global state
rounds_left = 700 - state.turn rounds_left = 700 - state.turn
current_pop = current_building.current_pop current_pop = current_building.current_pop
@ -252,20 +327,19 @@ def calculate_best_upgrade(current_building):
if (upgrade.name not in current_building.effects) and ((total_income() + effect.building_income_increase) > 50) and (money_reserve_multiplier*upgrade.cost < state.funds): if (upgrade.name not in current_building.effects) and ((total_income() + effect.building_income_increase) > 50) and (money_reserve_multiplier*upgrade.cost < state.funds):
average_outdoor_temp = (state.max_temp - state.min_temp)/2 average_outdoor_temp = (state.max_temp - state.min_temp)/2
average_heating_energy = max((((21 - average_outdoor_temp) * blueprint.emissivity * effect.emissivity_multiplier) / 0.75), 0) average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity * effect.emissivity_multiplier) / 0.75)
old_average_heating_energy = max((((21 - average_outdoor_temp) * blueprint.emissivity) / 0.75), 0) old_average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity) / 0.75)
lifetime_energy = (base_energy_need + effect.base_energy_mwh_increase + average_heating_energy - effect.mwh_production) * rounds_left lifetime_energy = (base_energy_need + effect.base_energy_mwh_increase + average_heating_energy - effect.mwh_production) * rounds_left
old_lifetime_energy = (base_energy_need + old_average_heating_energy) * rounds_left old_lifetime_energy = (base_energy_need + old_average_heating_energy) * rounds_left
upgrade_co2 = (effect.co2_per_pop_increase + 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
if "Mall.2" in current_building.effects and upgrade.name == "Charger": upgrade_co2 = (effect.co2_per_pop_increase * 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
upgrade_co2 = (effect.co2_per_pop_increase - 0.009 + 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
old_co2 = 0.03 * current_pop * rounds_left + (0.1 * old_lifetime_energy / 1000) old_co2 = 0.03 * current_pop * rounds_left + (0.1 * old_lifetime_energy / 1000)
co2 = upgrade_co2 - old_co2 co2 = upgrade_co2 - old_co2
max_happiness = effect.max_happiness_increase * current_pop * rounds_left max_happiness = effect.max_happiness_increase * rounds_left
score = max_happiness/10 - co2 score = max_happiness/10 - co2
# score = score / upgrade.cost
best_upgrade.append((score, upgrade.name)) best_upgrade.append((score, upgrade.name))
def sort_key(e): def sort_key(e):
@ -276,88 +350,22 @@ def calculate_best_upgrade(current_building):
return best_upgrade[0] return best_upgrade[0]
def calculate_best_utility():
global state, money_reserve_multiplier, round_buffer
best_utility = []
for utility_blueprint in state.available_utility_buildings:
if state.turn >= utility_blueprint.release_tick and (money_reserve_multiplier*utility_blueprint.cost < state.funds):
rounds_left = 700 - state.turn - (100 / utility_blueprint.build_speed) - round_buffer
for i in range(len(available_tiles)):
if isinstance(available_tiles[i], tuple):
score = 0
cost = utility_blueprint.cost
for effect_name in utility_blueprint.effects:
effect = game_layer.get_effect(effect_name)
affected_people = tile_score(available_tiles[i], effect.radius, effect_name)[0]
affected_buildings = tile_score(available_tiles[i], effect.radius, effect_name)[1]
cost -= effect.building_income_increase * rounds_left
happiness_increase = affected_people * effect.max_happiness_increase * rounds_left
co2 = affected_people * effect.co2_per_pop_increase * rounds_left - effect.mwh_production * affected_buildings * rounds_left
score += happiness_increase / 10 - co2
# print(effect_name + " gave score " + str(score))
# score = score / cost
best_utility.append((score, utility_blueprint.building_name, i))
def sort_key(e):
return e[0]
best_utility.sort(reverse=True, key=sort_key)
# print(best_utility)
if not best_utility:
return False
return best_utility[0]
def calculate_best_residence(): def calculate_best_residence():
global state, money_reserve_multiplier, round_buffer global state
rounds_left = 700 - state.turn
best_residence = [] best_residence = []
for residence_blueprint in state.available_residence_buildings: for residence_blueprint in state.available_residence_buildings:
if state.turn >= residence_blueprint.release_tick and (money_reserve_multiplier*residence_blueprint.cost < state.funds): if state.turn >= residence_blueprint.release_tick and (money_reserve_multiplier*residence_blueprint.cost < state.funds):
rounds_left = 700 - state.turn - (100 / residence_blueprint.build_speed) - round_buffer
average_outdoor_temp = (state.max_temp - state.min_temp)/2 average_outdoor_temp = (state.max_temp - state.min_temp)/2
average_heating_energy = ((0 - 0.04 * residence_blueprint.max_pop + (21 - average_outdoor_temp) * residence_blueprint.emissivity) / 0.75) average_heating_energy = ((0 - 0.04 * residence_blueprint.max_pop + (21 - average_outdoor_temp) * residence_blueprint.emissivity) / 0.75)
lifetime_energy = (residence_blueprint.base_energy_need + average_heating_energy) * rounds_left lifetime_energy = (residence_blueprint.base_energy_need + average_heating_energy) * rounds_left
distinct_residences = number_of_distinct_residences(residence_blueprint.building_name)
diversity = 1 + distinct_residences[0]/10
co2 = 0.03 * residence_blueprint.max_pop * rounds_left + residence_blueprint.co2_cost + (0.1 * lifetime_energy / 1000) co2 = 0.03 * residence_blueprint.max_pop * rounds_left + residence_blueprint.co2_cost + (0.1 * lifetime_energy / 1000)
max_happiness = residence_blueprint.max_happiness * residence_blueprint.max_pop * rounds_left max_happiness = residence_blueprint.max_happiness * rounds_left
max_happiness *= diversity
diversity_bonus = 0 score = residence_blueprint.max_pop*15 + max_happiness/10 - co2
if distinct_residences[1]: best_residence.append((score, residence_blueprint.building_name))
happy = 0
for residence in state.residences:
happy += residence.happiness_per_tick_per_pop * residence.current_pop
diversity_bonus = (happy * rounds_left / 10) / 10
score = residence_blueprint.max_pop*15 + max_happiness / 10 - co2 + diversity_bonus
# score = score / residence_blueprint.cost
# calculate tiles near utils
best_foundation_tile = []
for i in range(len(available_tiles)):
tile = available_tiles[i]
if isinstance(tile, tuple):
for utility in state.utilities:
for effect_name in utility.effects:
effect = game_layer.get_effect(effect_name)
delta_x = abs(tile[0] - utility.X)
delta_y = abs(tile[1] - utility.Y)
distance = delta_x + delta_y
if (distance <= effect.radius):
best_foundation_tile.append((distance, i))
def sort_key(e):
return e[0]
best_foundation_tile.sort(key=sort_key)
if best_foundation_tile:
best_residence.append((score, residence_blueprint.building_name, best_foundation_tile[0][1]))
else:
best_residence.append((score, residence_blueprint.building_name, False))
def sort_key(e): def sort_key(e):
return e[0] return e[0]
@ -367,18 +375,6 @@ def calculate_best_residence():
return best_residence[0] return best_residence[0]
def number_of_distinct_residences(new_building):
global state
unique_names = []
for residence in state.residences:
if residence.building_name not in unique_names:
unique_names.append(residence.building_name)
if new_building not in unique_names:
unique_names.append(new_building)
return len(unique_names), True
return len(unique_names), False
def chart_map(): def chart_map():
global state global state
for x in range(len(state.map) - 1): for x in range(len(state.map) - 1):
@ -388,22 +384,20 @@ def chart_map():
optimize_available_tiles() optimize_available_tiles()
def tile_score(tile, radius, effect): def evaluateTile(tile):
global state # score -1 för att ta bort själva tilen man checkar
affected_people = 0 score = -1
affected_buildings = 0 x = tile[0]
# send back # of max people in radius y = tile[1]
for residence in state.residences:
delta_x = abs(tile[0] - residence.X) for i in range(5):
delta_y = abs(tile[1] - residence.Y) for j in range(5):
distance = delta_x + delta_y if state.map[x - 2 + i][y - 2 + i] and abs(i - 2) + abs(j - 2) <= 2:
if (distance <= radius) and effect not in residence.effects: score += 1
affected_people += residence.current_pop
affected_buildings += 1
return affected_people, affected_buildings
def optimize_available_tiles(): def optimize_available_tiles():
global average_x, average_y, score_list
average_x = 0 average_x = 0
average_y = 0 average_y = 0
score_list = [] score_list = []
@ -421,10 +415,11 @@ def optimize_available_tiles():
score_list.sort(key=sort_key) score_list.sort(key=sort_key)
for i in range(len(score_list)): for i in range(len(score_list)):
available_tiles[i] = score_list[i][1] available_tiles[i] = score_list[i][1]
print("average x,y: " + str(average_x) + ", " + str(average_y))
def adjust_energy(current_building): def adjust_energy(current_building):
global rounds_between_energy, EMA_temp, state, temp_acc_multiplier global rounds_between_energy, EMA_temp, state
blueprint = game_layer.get_residence_blueprint(current_building.building_name) blueprint = game_layer.get_residence_blueprint(current_building.building_name)
base_energy = blueprint.base_energy_need base_energy = blueprint.base_energy_need
if "Charger" in current_building.effects: if "Charger" in current_building.effects:
@ -434,66 +429,134 @@ def adjust_energy(current_building):
if "Insulation" in current_building.effects: if "Insulation" in current_building.effects:
emissivity *= 0.6 emissivity *= 0.6
out_door_temp = state.current_temp * 2 - EMA_temp outDoorTemp = state.current_temp * 2 - EMA_temp
temp_acceleration = (2*(21 - current_building.temperature)/rounds_between_energy) * temp_acc_multiplier temp_acceleration = (2*(21 - current_building.temperature)/(rounds_between_energy))
effective_energy_in = ((temp_acceleration - 0.04 * current_building.current_pop + (current_building.temperature - out_door_temp) * emissivity) / 0.75) + base_energy effectiveEnergyIn = ((temp_acceleration - 0.04 * current_building.current_pop + (current_building.temperature - outDoorTemp) * emissivity) / 0.75) + base_energy
if effective_energy_in > base_energy: if effectiveEnergyIn > base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), effective_energy_in) game_layer.adjust_energy_level((current_building.X, current_building.Y), effectiveEnergyIn)
return True return True
elif effective_energy_in < base_energy: elif effectiveEnergyIn < base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01) game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01)
return True return True
else: else:
return False return False
def build_place(structure, i):
global building_under_construction, rounds_between_energy, state
if isinstance(available_tiles[i], tuple):
game_layer.place_foundation(available_tiles[i], structure)
for j in range(len(state.residences)):
building = state.residences[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
rounds_between_energy = len(state.residences)+2
return True
for j in range(len(state.utilities)):
building = state.utilities[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
return True
return False
def build(structure): def build(structure):
global building_under_construction, rounds_between_energy, state global building_under_construction, rounds_between_energy, state
# print("Building " + structure)
for i in range(len(available_tiles)): for i in range(len(available_tiles)):
if isinstance(available_tiles[i], tuple): if isinstance(available_tiles[i], tuple):
game_layer.place_foundation(available_tiles[i], structure) game_layer.place_foundation(available_tiles[i], structure)
for j in range(len(state.residences)): for building in state.available_residence_buildings:
building = state.residences[j] if structure in building.building_name:
coords_to_check = (building.X, building.Y) for j in range(len(state.residences)):
if coords_to_check == available_tiles[i]: building = state.residences[j]
available_tiles[i] = building coords_to_check = (building.X, building.Y)
building_under_construction = (building.X, building.Y, j) if coords_to_check == available_tiles[i]:
rounds_between_energy = len(state.residences)+2 available_tiles[i] = building
return True building_under_construction = (building.X, building.Y, j)
for j in range(len(state.utilities)): rounds_between_energy = len(state.residences)+2
building = state.utilities[j] return True
coords_to_check = (building.X, building.Y) for building in state.available_utility_buildings:
if coords_to_check == available_tiles[i]: if structure in building.building_name:
available_tiles[i] = building for j in range(len(state.utilities)):
building_under_construction = (building.X, building.Y, j) building = state.utilities[j]
return True coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
rounds_between_energy = len(state.residences)+2
return True
return False return False
def check_energies(buildings):
for building in enumerate(buildings):
if not 19 < building[1].temperature < 23:
adjust_energy_PID(building[0], building[1])
return False return False
def adjust_energy_PID(index, current_building):
newEnergy = 0
blueprint = game_layer.get_residence_blueprint(current_building.building_name)
base_energy = blueprint.base_energy_need
global state, desiredTemperature, PID_Ivalues
KP, KI, KD = getBuildingConstants(current_building.building_name)
P = (desiredTemperature - current_building.temperature) * KP
I = current_building.I + (
desiredTemperature - current_building.temperature) * KI # TODO fixa current_bulding.I PID_Ivalues listan
D = calcCurrentD(logResidenceInfo[index]) * KD # jag är genius
newEnergy = P + I + D
if newEnergy + base_energy < base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01)
return True
elif newEnergy + base_energy > base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), newEnergy + base_energy)
return True
else:
return False
def calcCurrentD(tmp_history):
# måste hitta necessaryDenominator för nytt nrDerivativeDots
ans = 0
consts = [-2, -1, 0, 1, 2]
nrDerivativeDots = 5 # endast udda antal
necessaryDenominator = 10
# for currDerivativeConstant in (range(-1*(nrDerivativeDots//2), (nrDerivativeDots//2)+1)): #+1 pga non-inclusive
for i in range(5):
ans += tmp_history[i] * consts[i]
return ans / necessaryDenominator
def recordTempHistories(buildings):
global logResidenceInfo, PID_Ivalues
while len(logResidenceInfo) < len(buildings):
logResidenceInfo.append([])
while len(PID_Ivalues) < len(buildings):
PID_Ivalues.append(3) # nu blir 3 I värdets start value på alla byggnader
for building in enumerate(buildings):
logResidenceInfo[building[0]].append(building[1].temperature)
# testHouse = buildings[0]
# testHouse.a = 1
# logResidenceInfo[0].append(testHouse.temperature)
# for building in buildings:
# building.tmp_History.append(building.temperature)
# f = open("tempLog.txt", "a+")
# f.write(str(game_layer.game_state.turn))
# f.write("; ")
# f.write(str(logResidenceInfo[0][-1]))
# f.write("; ")
# f.write(str(game_layer.game_state.current_temp))
# f.write("; ")
# if game_layer.game_state.turn > 5:
# d = calcCurrentD(logResidenceInfo[0][-5:])
# f.write(str(d))
# f.write("\r")
# f.close()
# if state.turn == 30:
# print(logResidenceInfo[0])
# for building in buildings:
# building.tmp_History.append(building.temperature)
def getBuildingConstants(building_name):
valuesDict = {"Apartments": (0.1, 0.3, 0.3), "ModernApartments": (0.1, 0.3, 0.3), "Cabin": (0.1, 0.3, 0.3),
"EnvironmentalHouse": (0.1, 0.3, 0.3), "HighRise": (0.1, 0.3, 0.3),
"LuxuryResidence": (0.1, 0.3, 0.3)}
return valuesDict.get(building_name)
if __name__ == "__main__": if __name__ == "__main__":
main() main()