# import api import time import sys from sys import exit from game_layer import GameLayer import game_state import traceback api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3" # The different map names can be found on considition.com/rules map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected. game_layer = GameLayer(api_key) # settings time_until_run_ends = 70 utilities = 3 money_reserve_multiplier = 1.5 desiredTemperature = 21 #logresidence[i][x] = temperatur nr X i byggnad med index i (andra byggnaden), samma i som state.residences logResidenceInfo = [] PID_Ivalues = [] def main(): global EMA_temp, rounds_between_energy, building_under_construction, available_tiles, state, queue_timeout # global vars rounds_between_energy = 5 EMA_temp = None building_under_construction = None available_tiles = [] queue_timeout = 1 game_layer.new_game(map_name) print("Starting game: " + game_layer.game_state.game_id) game_layer.start_game() # start timeout timer start_time = time.time() state = game_layer.game_state chart_map() while state.turn < state.max_turns: state = game_layer.game_state try: if EMA_temp is None: EMA_temp = state.current_temp ema_k_value = (2/(rounds_between_energy+1)) EMA_temp = state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value) take_turn() recordTempHistories(state.residences) except Exception: print(traceback.format_exc()) game_layer.end_game() exit() time_diff = time.time() - start_time if time_diff > time_until_run_ends: game_layer.end_game() exit() print("Done with game: " + state.game_id) print("Final score was: " + str(game_layer.get_score()["finalScore"])) return (state.game_id, game_layer.get_score()["finalScore"]) def take_turn(): global state # TODO Implement your artificial intelligence here. # TODO Take one action per turn until the game ends. # TODO The following is a short example of how to use the StarterKit if something_needs_attention(): pass elif develop_society(): pass else: game_layer.wait() # messages and errors for console log for message in state.messages: print(message) for error in state.errors: print("Error: " + error) #if (i == 0 or i%5 == 0)and i<26: # game_layer.place_foundation(freeSpace[(i//5)+2], game_layer.game_state.available_residence_buildings[i//5].building_name) ''' if (game_layer.game_state.turn == 0): game_layer.place_foundation(freeSpace[2], game_layer.game_state.available_residence_buildings[0].building_name) the_first_residence = state.residences[0] if the_first_residence.build_progress < 100: game_layer.build(freeSpace[2]) if len(state.residences) == 1: game_layer.place_foundation(freeSpace[3], game_layer.game_state.available_residence_buildings[5].building_name) the_second_residence = state.residences[1] if the_second_residence.build_progress < 100: game_layer.build(freeSpace[3]) if len(state.residences) == 2: game_layer.place_foundation(freeSpace[5], game_layer.game_state.available_residence_buildings[1].building_name) the_third_residence = state.residences[2] if the_third_residence.build_progress < 100: game_layer.build(freeSpace[5]) if len(state.residences) == 3: game_layer.place_foundation((4,4), game_layer.game_state.available_residence_buildings[4].building_name) the_fourth_residence = state.residences[3] if the_fourth_residence.build_progress < 100: game_layer.build((4,4)) if len(state.residences) == 4: game_layer.place_foundation((4,5), game_layer.game_state.available_residence_buildings[3].building_name) the_fifth_residence = state.residences[4] if the_fifth_residence.build_progress < 100: game_layer.build((4,5)) if len(state.residences) == 5: game_layer.place_foundation((4,6), game_layer.game_state.available_residence_buildings[4].building_name) the_sixth_residence = state.residences[5] if (the_sixth_residence.build_progress < 100) and game_layer.game_state.funds > 4000: game_layer.build((4,6)) for i in range(len(state.residences)): if state.residences[i].health < 45: game_layer.maintenance(state.residences[i].X, state.residences[i].Y) for i in range(len(state.residences)): if game_layer.game_state.turn % ROUNDVARIABLE == i: adjustEnergy(the_first_residence) elif the_first_residence.health < : game_layer.maintenance(freeSpace[2]) elif the_second_residence.health < 70: game_layer.maintenance(freeSpace[3]) elif the_third_residence.health < 70: game_layer.maintenance(freeSpace[5]) elif the_fourth_residence.health < 70: game_layer.maintenance((4,4)) elif the_fifth_residence.health < 70: game_layer.maintenance((4,5)) elif the_sixth_residence.health < 70: game_layer.maintenance((4,6)) elif (the_second_residence.health > 70) and not len(state.utilities) > 0: game_layer.place_foundation(freeSpace[4], game_layer.game_state.available_utility_buildings[2].building_name) elif (state.utilities[0].build_progress < 100): game_layer.build(freeSpace[4]) #elif (game_layer.game_state.turn > 35) and not len(state.utilities) > 1: # game_layer.place_foundation((4,6), game_layer.game_state.available_utility_buildings[1].building_name) #elif (state.utilities[1].build_progress < 100): # game_layer.build((4,6)) elif (game_layer.game_state.turn % rounds_between_energy == 0): adjustEnergy(the_first_residence) elif (game_layer.game_state.turn % rounds_between_energy == 1): adjustEnergy(the_second_residence) elif (game_layer.game_state.turn % rounds_between_energy == 2): adjustEnergy(the_third_residence) elif (game_layer.game_state.turn % rounds_between_energy == 3): adjustEnergy(the_fourth_residence) elif (game_layer.game_state.turn % rounds_between_energy == 4): adjustEnergy(the_fifth_residence) elif (game_layer.game_state.turn % rounds_between_energy == 5): adjustEnergy(the_sixth_residence) else: the_only_residence = state.residences[0] if the_only_residence.build_progress < 100: game_layer.build((the_only_residence.X, the_only_residence.Y)) elif the_only_residence.health < 50: game_layer.maintenance((the_only_residence.X, the_only_residence.Y)) elif the_only_residence.temperature < 18: blueprint = game_layer.get_residence_blueprint(the_only_residence.building_name) energy = blueprint.base_energy_need + 0.5 \ + (the_only_residence.temperature - state.current_temp) * blueprint.emissivity / 1 \ - the_only_residence.current_pop * 0.04 game_layer.adjust_energy_level((the_only_residence.X, the_only_residence.Y), energy) elif the_only_residence.temperature > 24: blueprint = game_layer.get_residence_blueprint(the_only_residence.building_name) energy = blueprint.base_energy_need - 0.5 \ + (the_only_residence.temperature - state.current_temp) * blueprint.emissivity / 1 \ - the_only_residence.current_pop * 0.04 game_layer.adjust_energy_level((the_only_residence.X, the_only_residence.Y), energy) elif state.available_upgrades[0].name not in the_only_residence.effects: game_layer.buy_upgrade((the_only_residence.X, the_only_residence.Y), state.available_upgrades[0].name) else: game_layer.wait() for message in game_layer.game_state.messages: print(message) for error in game_layer.game_state.errors: print("Error: " + error) ''' def develop_society(): global state, queue_timeout, available_tiles, utilities if queue_timeout > 1: queue_timeout -= 1 # priority scores, 1 = very urgent, 0 = not urgent at all # queue modifier * funds modifier * existing houses modifier build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (1 - (7500 / (1 + state.funds))) * (1 - (len(state.residences) / (1 + len(available_tiles) - utilities))) upgrade_residence_score = 0 # existing houses modifier * funds modifier * existing utilities modifier build_utility_score = (len(state.residences) / (1 + len(available_tiles)-utilities)) * (1 - (16000 / (1 + state.funds))) * (1 - (len(state.utilities) / utilities)) # turn modifier * funds modifier build_upgrade_score = (1 - (state.turn / 700)) * (2 - (15000 / (1 + state.funds))) if len(state.residences) < 1: build_residence_score = 100 decision = [ ('build_residence', build_residence_score), ('upgrade_residence', upgrade_residence_score), ('build_utility', build_utility_score), ('build_upgrade', build_upgrade_score) ] def sort_key(e): return e[1] decision.sort(reverse=True, key=sort_key) for i in range(4): if decision[0][0] == "build_residence": # build housing queue_timeout = 5 #if len(state.residences) < len(state.available_residence_buildings): # return build(state.available_residence_buildings[len(state.residences)].building_name) #else: cbr = calculate_best_residence() if cbr: return build(cbr[1]) if decision[0][0] == "build_utility": # build utilities #return build("WindTurbine") pass if decision[0][0] == "upgrade_residence": # build utilities pass if decision[0][0] == "build_upgrade": # build upgrades for residence in state.residences: if state.available_upgrades[0].name not in residence.effects and (money_reserve_multiplier*3500 < state.funds) and ((total_income() - 6) > 50): game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[0].name) return True if state.available_upgrades[5].name not in residence.effects and (money_reserve_multiplier*1250 < state.funds): game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[5].name) return True gbp = get_best_upgrade() if gbp: game_layer.buy_upgrade((gbp[2].X, gbp[2].Y), gbp[1]) return True del decision[0] return False def something_needs_attention(): global building_under_construction, edit_temp, maintain, state, rounds_between_energy # check if temp needs adjusting edit_temp = (False, 0) # check if need for maintenance maintain = (False, 0) for i in range(len(state.residences)): if state.residences[i].health < 35+rounds_between_energy*game_layer.get_residence_blueprint(state.residences[i].building_name).decay_rate: maintain = (True, i) if (state.turn % rounds_between_energy == i) and not state.residences[i].build_progress < 100: edit_temp = (True, i) if maintain[0]: # check maintenance game_layer.maintenance((state.residences[maintain[1]].X, state.residences[maintain[1]].Y)) return True elif edit_temp[0]: # adjust temp of buildings return adjust_energy(state.residences[edit_temp[1]]) elif building_under_construction is not None: # finish construction if (len(state.residences)-1 >= building_under_construction[2]) and (state.residences[building_under_construction[2]].build_progress < 100): game_layer.build((building_under_construction[0], building_under_construction[1])) if not state.residences[building_under_construction[2]].build_progress < 100: building_under_construction = None return True elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100): game_layer.build((building_under_construction[0], building_under_construction[1])) if not state.residences[building_under_construction[2]].build_progress < 100: building_under_construction = None return True else: building_under_construction = None return False else: return False def total_income(): global state income = 0 for residence in state.residences: income += game_layer.get_residence_blueprint(residence.building_name).income_per_pop * residence.current_pop return income def get_best_upgrade(): global state best_upgrade = [] for residence in state.residences: cbu = calculate_best_upgrade(residence) if cbu is not False: score = cbu[0] upgrade = cbu[1] best_upgrade.append((score, upgrade, residence)) def sort_key(e): return e[0] best_upgrade.sort(reverse=True, key=sort_key) if not best_upgrade: return False return best_upgrade[0] def calculate_best_upgrade(current_building): global state rounds_left = 700 - state.turn current_pop = current_building.current_pop blueprint = game_layer.get_blueprint(current_building.building_name) base_energy_need = blueprint.base_energy_need best_upgrade = [] for upgrade in state.available_upgrades: effect = game_layer.get_effect(upgrade.effect) if (upgrade.name not in current_building.effects) and ((total_income() + effect.building_income_increase) > 50) and (money_reserve_multiplier*upgrade.cost < state.funds): average_outdoor_temp = (state.max_temp - state.min_temp)/2 average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity * effect.emissivity_multiplier) / 0.75) old_average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity) / 0.75) lifetime_energy = (base_energy_need + effect.base_energy_mwh_increase + average_heating_energy - effect.mwh_production) * rounds_left old_lifetime_energy = (base_energy_need + old_average_heating_energy) * rounds_left upgrade_co2 = (effect.co2_per_pop_increase * 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000) old_co2 = 0.03 * current_pop * rounds_left + (0.1 * old_lifetime_energy / 1000) co2 = upgrade_co2 - old_co2 max_happiness = effect.max_happiness_increase * rounds_left score = max_happiness/10 - co2 best_upgrade.append((score, upgrade.name)) def sort_key(e): return e[0] best_upgrade.sort(reverse=True, key=sort_key) if not best_upgrade: return False return best_upgrade[0] def calculate_best_residence(): global state rounds_left = 700 - state.turn best_residence = [] for residence_blueprint in state.available_residence_buildings: if state.turn >= residence_blueprint.release_tick and (money_reserve_multiplier*residence_blueprint.cost < state.funds): average_outdoor_temp = (state.max_temp - state.min_temp)/2 average_heating_energy = ((0 - 0.04 * residence_blueprint.max_pop + (21 - average_outdoor_temp) * residence_blueprint.emissivity) / 0.75) lifetime_energy = (residence_blueprint.base_energy_need + average_heating_energy) * rounds_left co2 = 0.03 * residence_blueprint.max_pop * rounds_left + residence_blueprint.co2_cost + (0.1 * lifetime_energy / 1000) max_happiness = residence_blueprint.max_happiness * rounds_left score = residence_blueprint.max_pop*15 + max_happiness/10 - co2 best_residence.append((score, residence_blueprint.building_name)) def sort_key(e): return e[0] best_residence.sort(reverse=True, key=sort_key) if not best_residence: return False return best_residence[0] def chart_map(): global state for x in range(len(state.map) - 1): for y in range(len(state.map) - 1): if state.map[x][y] == 0: available_tiles.append((x, y)) optimize_available_tiles() def evaluateTile(tile): # score -1 för att ta bort själva tilen man checkar score = -1 x = tile[0] y = tile[1] for i in range(5): for j in range(5): if state.map[x - 2 + i][y - 2 + i] and abs(i - 2) + abs(j - 2) <= 2: score += 1 def optimize_available_tiles(): global average_x, average_y, score_list average_x = 0 average_y = 0 score_list = [] for tile in available_tiles: # calc average coordinates average_x += tile[0] average_y += tile[1] average_x /= len(available_tiles) average_y /= len(available_tiles) for tile in available_tiles: tile_score = abs(tile[0] - average_x) + abs(tile[1] - average_y) score_list.append((tile_score, tile)) def sort_key(e): return e[0] score_list.sort(key=sort_key) for i in range(len(score_list)): available_tiles[i] = score_list[i][1] print("average x,y: " + str(average_x) + ", " + str(average_y)) def adjust_energy(current_building): global rounds_between_energy, EMA_temp, state blueprint = game_layer.get_residence_blueprint(current_building.building_name) base_energy = blueprint.base_energy_need if "Charger" in current_building.effects: base_energy += 1.8 emissivity = blueprint.emissivity if "Insulation" in current_building.effects: emissivity *= 0.6 outDoorTemp = state.current_temp * 2 - EMA_temp temp_acceleration = (2*(21 - current_building.temperature)/(rounds_between_energy)) effectiveEnergyIn = ((temp_acceleration - 0.04 * current_building.current_pop + (current_building.temperature - outDoorTemp) * emissivity) / 0.75) + base_energy if effectiveEnergyIn > base_energy: game_layer.adjust_energy_level((current_building.X, current_building.Y), effectiveEnergyIn) return True elif effectiveEnergyIn < base_energy: game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01) return True else: return False def build(structure): global building_under_construction, rounds_between_energy, state # print("Building " + structure) for i in range(len(available_tiles)): if isinstance(available_tiles[i], tuple): game_layer.place_foundation(available_tiles[i], structure) for building in state.available_residence_buildings: if structure in building.building_name: for j in range(len(state.residences)): building = state.residences[j] coords_to_check = (building.X, building.Y) if coords_to_check == available_tiles[i]: available_tiles[i] = building building_under_construction = (building.X, building.Y, j) rounds_between_energy = len(state.residences)+2 return True for building in state.available_utility_buildings: if structure in building.building_name: for j in range(len(state.utilities)): building = state.utilities[j] coords_to_check = (building.X, building.Y) if coords_to_check == available_tiles[i]: available_tiles[i] = building building_under_construction = (building.X, building.Y, j) rounds_between_energy = len(state.residences)+2 return True return False def check_energies(buildings): for building in enumerate(buildings): if not 19 < building[1].temperature < 23: adjust_energy_PID(building[0], building[1]) return False def adjust_energy_PID(index, current_building): newEnergy = 0 blueprint = game_layer.get_residence_blueprint(current_building.building_name) base_energy = blueprint.base_energy_need global state, desiredTemperature, PID_Ivalues KP, KI, KD = getBuildingConstants(current_building.building_name) P = (desiredTemperature - current_building.temperature) * KP I = current_building.I + ( desiredTemperature - current_building.temperature) * KI # TODO fixa current_bulding.I PID_Ivalues listan D = calcCurrentD(logResidenceInfo[index]) * KD # jag är genius newEnergy = P + I + D if newEnergy + base_energy < base_energy: game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01) return True elif newEnergy + base_energy > base_energy: game_layer.adjust_energy_level((current_building.X, current_building.Y), newEnergy + base_energy) return True else: return False def calcCurrentD(tmp_history): # måste hitta necessaryDenominator för nytt nrDerivativeDots ans = 0 consts = [-2, -1, 0, 1, 2] nrDerivativeDots = 5 # endast udda antal necessaryDenominator = 10 # for currDerivativeConstant in (range(-1*(nrDerivativeDots//2), (nrDerivativeDots//2)+1)): #+1 pga non-inclusive for i in range(5): ans += tmp_history[i] * consts[i] return ans / necessaryDenominator def recordTempHistories(buildings): global logResidenceInfo, PID_Ivalues while len(logResidenceInfo) < len(buildings): logResidenceInfo.append([]) while len(PID_Ivalues) < len(buildings): PID_Ivalues.append(3) # nu blir 3 I värdets start value på alla byggnader for building in enumerate(buildings): logResidenceInfo[building[0]].append(building[1].temperature) # testHouse = buildings[0] # testHouse.a = 1 # logResidenceInfo[0].append(testHouse.temperature) # for building in buildings: # building.tmp_History.append(building.temperature) # f = open("tempLog.txt", "a+") # f.write(str(game_layer.game_state.turn)) # f.write("; ") # f.write(str(logResidenceInfo[0][-1])) # f.write("; ") # f.write(str(game_layer.game_state.current_temp)) # f.write("; ") # if game_layer.game_state.turn > 5: # d = calcCurrentD(logResidenceInfo[0][-5:]) # f.write(str(d)) # f.write("\r") # f.close() # if state.turn == 30: # print(logResidenceInfo[0]) # for building in buildings: # building.tmp_History.append(building.temperature) def getBuildingConstants(building_name): valuesDict = {"Apartments": (0.1, 0.3, 0.3), "ModernApartments": (0.1, 0.3, 0.3), "Cabin": (0.1, 0.3, 0.3), "EnvironmentalHouse": (0.1, 0.3, 0.3), "HighRise": (0.1, 0.3, 0.3), "LuxuryResidence": (0.1, 0.3, 0.3)} return valuesDict.get(building_name) if __name__ == "__main__": main()