264 lines
11 KiB
Python
264 lines
11 KiB
Python
# import api
|
|
import time
|
|
import sys
|
|
from sys import exit
|
|
from game_layer import GameLayer
|
|
import game_state
|
|
import traceback
|
|
|
|
api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3"
|
|
# The different map names can be found on considition.com/rules
|
|
map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected.
|
|
game_layer = GameLayer(api_key)
|
|
# settings
|
|
use_prebuilt_strategy = False
|
|
time_until_run_ends = 70
|
|
utilities = 3
|
|
|
|
|
|
def main():
|
|
global EMA_temp, rounds_between_energy, building_under_construction, available_tiles, state, queue_timeout
|
|
# global vars
|
|
rounds_between_energy = 5
|
|
EMA_temp = None
|
|
building_under_construction = None
|
|
available_tiles = []
|
|
queue_timeout = 0
|
|
|
|
game_layer.new_game(map_name)
|
|
print("Starting game: " + game_layer.game_state.game_id)
|
|
game_layer.start_game()
|
|
# start timeout timer
|
|
start_time = time.time()
|
|
state = game_layer.game_state
|
|
chart_map()
|
|
while state.turn < state.max_turns:
|
|
state = game_layer.game_state
|
|
try:
|
|
if EMA_temp is None:
|
|
EMA_temp = state.current_temp
|
|
ema_k_value = (2/(rounds_between_energy+1))
|
|
EMA_temp = state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value)
|
|
take_turn()
|
|
except Exception:
|
|
print(traceback.format_exc())
|
|
game_layer.end_game()
|
|
exit()
|
|
time_diff = time.time() - start_time
|
|
if time_diff > time_until_run_ends:
|
|
game_layer.end_game()
|
|
exit()
|
|
print("Done with game: " + state.game_id)
|
|
print("Final score was: " + str(game_layer.get_score()["finalScore"]))
|
|
return (state.game_id, game_layer.get_score()["finalScore"])
|
|
|
|
|
|
def take_turn():
|
|
global state
|
|
if not use_prebuilt_strategy:
|
|
# TODO Implement your artificial intelligence here.
|
|
# TODO Take one action per turn until the game ends.
|
|
# TODO The following is a short example of how to use the StarterKit
|
|
if something_needs_attention():
|
|
pass
|
|
else:
|
|
develop_society()
|
|
# messages and errors for console log
|
|
for message in state.messages:
|
|
print(message)
|
|
for error in state.errors:
|
|
print("Error: " + error)
|
|
|
|
# pre-made test strategy which came with starter kit
|
|
if use_prebuilt_strategy:
|
|
state = game_layer.game_state
|
|
if len(state.residences) < 1:
|
|
for i in range(len(state.map)):
|
|
for j in range(len(state.map)):
|
|
if state.map[i][j] == 0:
|
|
x = i
|
|
y = j
|
|
break
|
|
game_layer.place_foundation((x, y), game_layer.game_state.available_residence_buildings[0].building_name)
|
|
else:
|
|
the_only_residence = state.residences[0]
|
|
if the_only_residence.build_progress < 100:
|
|
game_layer.build((the_only_residence.X, the_only_residence.Y))
|
|
elif the_only_residence.health < 50:
|
|
game_layer.maintenance((the_only_residence.X, the_only_residence.Y))
|
|
elif the_only_residence.temperature < 18:
|
|
blueprint = game_layer.get_residence_blueprint(the_only_residence.building_name)
|
|
energy = blueprint.base_energy_need + 0.5 \
|
|
+ (the_only_residence.temperature - state.current_temp) * blueprint.emissivity / 1 \
|
|
- the_only_residence.current_pop * 0.04
|
|
game_layer.adjust_energy_level((the_only_residence.X, the_only_residence.Y), energy)
|
|
elif the_only_residence.temperature > 24:
|
|
blueprint = game_layer.get_residence_blueprint(the_only_residence.building_name)
|
|
energy = blueprint.base_energy_need - 0.5 \
|
|
+ (the_only_residence.temperature - state.current_temp) * blueprint.emissivity / 1 \
|
|
- the_only_residence.current_pop * 0.04
|
|
game_layer.adjust_energy_level((the_only_residence.X, the_only_residence.Y), energy)
|
|
elif state.available_upgrades[0].name not in the_only_residence.effects:
|
|
game_layer.buy_upgrade((the_only_residence.X, the_only_residence.Y), state.available_upgrades[0].name)
|
|
else:
|
|
game_layer.wait()
|
|
for message in game_layer.game_state.messages:
|
|
print(message)
|
|
for error in game_layer.game_state.errors:
|
|
print("Error: " + error)
|
|
|
|
|
|
def develop_society():
|
|
global state, queue_timeout, available_tiles
|
|
|
|
# check if queue is full
|
|
if (state.housing_queue > 10 + len(state.utilities) * 0.15) and queue_timeout >= 5:
|
|
queue_is_full = True
|
|
queue_timeout = 0
|
|
else:
|
|
queue_is_full = False
|
|
queue_timeout += 1
|
|
|
|
build_residence_score = 0
|
|
upgrade_residence_score = 0
|
|
build_utility_score = 0
|
|
build_upgrade_score = 0
|
|
|
|
decision_engine = None
|
|
|
|
if len(state.residences) < 2:
|
|
build("Apartments")
|
|
elif len(state.utilities) < 1:
|
|
build("WindTurbine")
|
|
elif state.funds > 30000 and len(state.residences) < 4:
|
|
build("HighRise")
|
|
elif queue_is_full: # build if queue full and can afford housing
|
|
build("ModernApartments")
|
|
elif build_upgrade_score:
|
|
# if state.available_upgrades[0].name not in the_only_residence.effects:
|
|
# game_layer.buy_upgrade((the_only_residence.X, the_only_residence.Y), state.available_upgrades[0].name)
|
|
pass
|
|
else:
|
|
game_layer.wait()
|
|
|
|
|
|
def something_needs_attention():
|
|
global building_under_construction, edit_temp, maintain, state
|
|
|
|
# check if temp needs adjusting
|
|
edit_temp = (False, 0)
|
|
for i in range(len(state.residences)):
|
|
if (state.turn % rounds_between_energy == i) and not state.residences[i].build_progress < 100:
|
|
edit_temp = (True, i)
|
|
# check if need for maintenance
|
|
maintain = (False, 0)
|
|
for i in range(len(state.residences)):
|
|
if state.residences[i].health < 41+rounds_between_energy*game_layer.get_residence_blueprint(state.residences[i].building_name).decay_rate:
|
|
maintain = (True, i)
|
|
|
|
if maintain[0]: # check maintenance
|
|
game_layer.maintenance((state.residences[maintain[1]].X, state.residences[maintain[1]].Y))
|
|
return True
|
|
elif edit_temp[0]: # adjust temp of buildings
|
|
return adjust_energy(state.residences[edit_temp[1]])
|
|
elif building_under_construction is not None: # finish construction
|
|
if (len(state.residences)-1 >= building_under_construction[2]) and (state.residences[building_under_construction[2]].build_progress < 100):
|
|
game_layer.build((building_under_construction[0], building_under_construction[1]))
|
|
if not state.residences[building_under_construction[2]].build_progress < 100:
|
|
building_under_construction = None
|
|
return True
|
|
elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100):
|
|
game_layer.build((building_under_construction[0], building_under_construction[1]))
|
|
if not state.residences[building_under_construction[2]].build_progress < 100:
|
|
building_under_construction = None
|
|
return True
|
|
else:
|
|
building_under_construction = None
|
|
return False
|
|
else:
|
|
return False
|
|
|
|
def chart_map():
|
|
global state
|
|
for x in range(len(state.map) - 1):
|
|
for y in range(len(state.map) - 1):
|
|
if state.map[x][y] == 0:
|
|
available_tiles.append((x, y))
|
|
optimize_available_tiles()
|
|
|
|
|
|
def adjust_energy(current_building):
|
|
global rounds_between_energy, EMA_temp, state
|
|
blueprint = game_layer.get_residence_blueprint(current_building.building_name)
|
|
outDoorTemp = state.current_temp * 2 - EMA_temp
|
|
|
|
temp_acceleration = (2*(21 - current_building.temperature)/(rounds_between_energy))
|
|
|
|
effectiveEnergyIn = ((temp_acceleration - 0.04 * current_building.current_pop + (current_building.temperature - outDoorTemp) * blueprint.emissivity) / 0.75) + blueprint.base_energy_need
|
|
|
|
if effectiveEnergyIn > blueprint.base_energy_need:
|
|
game_layer.adjust_energy_level((current_building.X, current_building.Y), effectiveEnergyIn)
|
|
return True
|
|
elif effectiveEnergyIn < blueprint.base_energy_need:
|
|
game_layer.adjust_energy_level((current_building.X, current_building.Y), blueprint.base_energy_need + 0.01)
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
def optimize_available_tiles():
|
|
global average_x, average_y, score_list
|
|
average_x = 0
|
|
average_y = 0
|
|
score_list = []
|
|
for tile in available_tiles: # calc average coordinates
|
|
average_x += tile[0]
|
|
average_y += tile[1]
|
|
average_x /= len(available_tiles)
|
|
average_y /= len(available_tiles)
|
|
print("Assign scores")
|
|
for tile in available_tiles:
|
|
tile_score = abs(tile[0] - average_x) + abs(tile[1] - average_y)
|
|
score_list.append((tile_score, tile))
|
|
|
|
def sort_key(e):
|
|
return e[0]
|
|
print("Sorting tile list")
|
|
score_list.sort(key=sort_key)
|
|
for i in range(len(score_list)):
|
|
available_tiles[i] = score_list[i][1]
|
|
print("average x,y: " + str(average_x) + ", " + str(average_y))
|
|
|
|
|
|
def build(structure):
|
|
global building_under_construction, rounds_between_energy, state
|
|
print("Building " + structure)
|
|
for i in range(len(available_tiles)):
|
|
if isinstance(available_tiles[i], tuple):
|
|
game_layer.place_foundation(available_tiles[i], structure)
|
|
for building in state.available_residence_buildings:
|
|
if structure in building.building_name:
|
|
for j in range(len(state.residences)):
|
|
building = state.residences[j]
|
|
coords_to_check = (building.X, building.Y)
|
|
if coords_to_check == available_tiles[i]:
|
|
available_tiles[i] = building
|
|
building_under_construction = (building.X, building.Y, j)
|
|
rounds_between_energy = len(state.residences)+2
|
|
return True
|
|
for building in state.available_utility_buildings:
|
|
if structure in building.building_name:
|
|
for j in range(len(state.utilities)):
|
|
building = state.utilities[j]
|
|
coords_to_check = (building.X, building.Y)
|
|
if coords_to_check == available_tiles[i]:
|
|
available_tiles[i] = building
|
|
building_under_construction = (building.X, building.Y, j)
|
|
rounds_between_energy = len(state.residences)+2
|
|
return True
|
|
return False
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|