1 | /* |
2 | * Arduino_skal.cpp |
3 | * |
4 | * Academic License - for use in teaching, academic research, and meeting |
5 | * course requirements at degree granting institutions only. Not for |
6 | * government, commercial, or other organizational use. |
7 | * |
8 | * Code generation for model "Arduino_skal". |
9 | * |
10 | * Model version : 1.1 |
11 | * Simulink Coder version : 9.5 (R2021a) 14-Nov-2020 |
12 | * C++ source code generated on : Thu Apr 15 15:56:50 2021 |
13 | * |
14 | * Target selection: grt.tlc |
15 | * Note: GRT includes extra infrastructure and instrumentation for prototyping |
16 | * Embedded hardware selection: Intel->x86-64 (Windows64) |
17 | * Code generation objective: Debugging |
18 | * Validation result: Not run |
19 | */ |
20 | |
21 | #include "Arduino_skal.h" |
22 | #include "Arduino_skal_private.h" |
23 | |
24 | /* |
25 | * This function updates continuous states using the ODE3 fixed-step |
26 | * solver algorithm |
27 | */ |
28 | void Arduino_skalModelClass::rt_ertODEUpdateContinuousStates(RTWSolverInfo *si ) |
29 | { |
30 | /* Solver Matrices */ |
31 | static const real_T rt_ODE3_A[3] = { |
32 | 1.0/2.0, 3.0/4.0, 1.0 |
33 | }; |
34 | |
35 | static const real_T rt_ODE3_B[3][3] = { |
36 | { 1.0/2.0, 0.0, 0.0 }, |
37 | |
38 | { 0.0, 3.0/4.0, 0.0 }, |
39 | |
40 | { 2.0/9.0, 1.0/3.0, 4.0/9.0 } |
41 | }; |
42 | |
43 | time_T t = rtsiGetT(si); |
44 | time_T tnew = rtsiGetSolverStopTime(si); |
45 | time_T h = rtsiGetStepSize(si); |
46 | real_T *x = rtsiGetContStates(si); |
47 | ODE3_IntgData *id = static_cast<ODE3_IntgData *>(rtsiGetSolverData(si)); |
48 | real_T *y = id->y; |
49 | real_T *f0 = id->f[0]; |
50 | real_T *f1 = id->f[1]; |
51 | real_T *f2 = id->f[2]; |
52 | real_T hB[3]; |
53 | int_T i; |
54 | int_T nXc = 4; |
55 | rtsiSetSimTimeStep(si,MINOR_TIME_STEP); |
56 | |
57 | /* Save the state values at time t in y, we'll use x as ynew. */ |
58 | (void) std::memcpy(y, x, |
59 | static_cast<uint_T>(nXc)*sizeof(real_T)); |
60 | |
61 | /* Assumes that rtsiSetT and ModelOutputs are up-to-date */ |
62 | /* f0 = f(t,y) */ |
63 | rtsiSetdX(si, f0); |
64 | Arduino_skal_derivatives(); |
65 | |
66 | /* f(:,2) = feval(odefile, t + hA(1), y + f*hB(:,1), args(:)(*)); */ |
67 | hB[0] = h * rt_ODE3_B[0][0]; |
68 | for (i = 0; i < nXc; i++) { |
69 | x[i] = y[i] + (f0[i]*hB[0]); |
70 | } |
71 | |
72 | rtsiSetT(si, t + h*rt_ODE3_A[0]); |
73 | rtsiSetdX(si, f1); |
74 | this->step(); |
75 | Arduino_skal_derivatives(); |
76 | |
77 | /* f(:,3) = feval(odefile, t + hA(2), y + f*hB(:,2), args(:)(*)); */ |
78 | for (i = 0; i <= 1; i++) { |
79 | hB[i] = h * rt_ODE3_B[1][i]; |
80 | } |
81 | |
82 | for (i = 0; i < nXc; i++) { |
83 | x[i] = y[i] + (f0[i]*hB[0] + f1[i]*hB[1]); |
84 | } |
85 | |
86 | rtsiSetT(si, t + h*rt_ODE3_A[1]); |
87 | rtsiSetdX(si, f2); |
88 | this->step(); |
89 | Arduino_skal_derivatives(); |
90 | |
91 | /* tnew = t + hA(3); |
92 | ynew = y + f*hB(:,3); */ |
93 | for (i = 0; i <= 2; i++) { |
94 | hB[i] = h * rt_ODE3_B[2][i]; |
95 | } |
96 | |
97 | for (i = 0; i < nXc; i++) { |
98 | x[i] = y[i] + (f0[i]*hB[0] + f1[i]*hB[1] + f2[i]*hB[2]); |
99 | } |
100 | |
101 | rtsiSetT(si, tnew); |
102 | rtsiSetSimTimeStep(si,MAJOR_TIME_STEP); |
103 | } |
104 | |
105 | /* Model step function */ |
106 | void Arduino_skalModelClass::step() |
107 | { |
108 | const real_T *tmp_3; |
109 | real_T currentTime; |
110 | real_T tmp; |
111 | real_T tmp_0; |
112 | real_T tmp_1; |
113 | real_T tmp_2; |
114 | real_T u0; |
115 | int32_T i; |
116 | int32_T i_0; |
117 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
118 | /* set solver stop time */ |
119 | if (!((&Arduino_skal_M)->Timing.clockTick0+1)) { |
120 | rtsiSetSolverStopTime(&(&Arduino_skal_M)->solverInfo, (((&Arduino_skal_M |
121 | )->Timing.clockTickH0 + 1) * (&Arduino_skal_M)->Timing.stepSize0 * |
122 | 4294967296.0)); |
123 | } else { |
124 | rtsiSetSolverStopTime(&(&Arduino_skal_M)->solverInfo, (((&Arduino_skal_M |
125 | )->Timing.clockTick0 + 1) * (&Arduino_skal_M)->Timing.stepSize0 + |
126 | (&Arduino_skal_M)->Timing.clockTickH0 * (&Arduino_skal_M) |
127 | ->Timing.stepSize0 * 4294967296.0)); |
128 | } |
129 | } /* end MajorTimeStep */ |
130 | |
131 | /* Update absolute time of base rate at minor time step */ |
132 | if (rtmIsMinorTimeStep((&Arduino_skal_M))) { |
133 | (&Arduino_skal_M)->Timing.t[0] = rtsiGetT(&(&Arduino_skal_M)->solverInfo); |
134 | } |
135 | |
136 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
137 | /* Constant: '<S1>/X0' */ |
138 | Arduino_skal_B.X0[0] = Arduino_skal_P.X0_Value[0]; |
139 | Arduino_skal_B.X0[1] = Arduino_skal_P.X0_Value[1]; |
140 | Arduino_skal_B.X0[2] = Arduino_skal_P.X0_Value[2]; |
141 | Arduino_skal_B.X0[3] = Arduino_skal_P.X0_Value[3]; |
142 | } |
143 | |
144 | /* Integrator: '<S1>/MemoryX' */ |
145 | if (Arduino_skal_DW.MemoryX_IWORK != 0) { |
146 | Arduino_skal_X.MemoryX_CSTATE[0] = Arduino_skal_B.X0[0]; |
147 | Arduino_skal_X.MemoryX_CSTATE[1] = Arduino_skal_B.X0[1]; |
148 | Arduino_skal_X.MemoryX_CSTATE[2] = Arduino_skal_B.X0[2]; |
149 | Arduino_skal_X.MemoryX_CSTATE[3] = Arduino_skal_B.X0[3]; |
150 | } |
151 | |
152 | /* Integrator: '<S1>/MemoryX' */ |
153 | Arduino_skal_B.MemoryX[0] = Arduino_skal_X.MemoryX_CSTATE[0]; |
154 | |
155 | /* Gain: '<Root>/Gain' */ |
156 | u0 = Arduino_skal_P.K[0] * Arduino_skal_B.MemoryX[0]; |
157 | |
158 | /* Integrator: '<S1>/MemoryX' */ |
159 | Arduino_skal_B.MemoryX[1] = Arduino_skal_X.MemoryX_CSTATE[1]; |
160 | |
161 | /* Gain: '<Root>/Gain' */ |
162 | u0 += Arduino_skal_P.K[1] * Arduino_skal_B.MemoryX[1]; |
163 | |
164 | /* Integrator: '<S1>/MemoryX' */ |
165 | Arduino_skal_B.MemoryX[2] = Arduino_skal_X.MemoryX_CSTATE[2]; |
166 | |
167 | /* Gain: '<Root>/Gain' */ |
168 | u0 += Arduino_skal_P.K[2] * Arduino_skal_B.MemoryX[2]; |
169 | |
170 | /* Integrator: '<S1>/MemoryX' */ |
171 | Arduino_skal_B.MemoryX[3] = Arduino_skal_X.MemoryX_CSTATE[3]; |
172 | |
173 | /* Gain: '<Root>/Gain' */ |
174 | u0 += Arduino_skal_P.K[3] * Arduino_skal_B.MemoryX[3]; |
175 | |
176 | /* Gain: '<Root>/Gain' */ |
177 | Arduino_skal_B.Gain = u0; |
178 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
179 | /* MATLAB Function: '<S51>/SqrtUsedFcn' incorporates: |
180 | * Constant: '<S2>/CovarianceZ' |
181 | * Constant: '<S51>/isSqrtUsed' |
182 | */ |
183 | /* : if isSqrtUsed */ |
184 | if (Arduino_skal_P.isSqrtUsed_Value) { |
185 | /* : P = u*u.'; */ |
186 | for (i = 0; i < 4; i++) { |
187 | for (i_0 = 0; i_0 < 4; i_0++) { |
188 | Arduino_skal_B.P[i_0 + (i << 2)] = 0.0; |
189 | Arduino_skal_B.P[i_0 + (i << 2)] += |
190 | Arduino_skal_P.CovarianceZ_Value[i_0] * |
191 | Arduino_skal_P.CovarianceZ_Value[i]; |
192 | Arduino_skal_B.P[i_0 + (i << 2)] += |
193 | Arduino_skal_P.CovarianceZ_Value[i_0 + 4] * |
194 | Arduino_skal_P.CovarianceZ_Value[i + 4]; |
195 | Arduino_skal_B.P[i_0 + (i << 2)] += |
196 | Arduino_skal_P.CovarianceZ_Value[i_0 + 8] * |
197 | Arduino_skal_P.CovarianceZ_Value[i + 8]; |
198 | Arduino_skal_B.P[i_0 + (i << 2)] += |
199 | Arduino_skal_P.CovarianceZ_Value[i_0 + 12] * |
200 | Arduino_skal_P.CovarianceZ_Value[i + 12]; |
201 | } |
202 | } |
203 | } else { |
204 | /* : else */ |
205 | /* : P = u; */ |
206 | std::memcpy(&Arduino_skal_B.P[0], &Arduino_skal_P.CovarianceZ_Value[0], |
207 | sizeof(real_T) << 4U); |
208 | } |
209 | |
210 | /* End of MATLAB Function: '<S51>/SqrtUsedFcn' */ |
211 | } |
212 | |
213 | /* Product: '<S22>/A[k]*xhat[k|k-1]' incorporates: |
214 | * Constant: '<S1>/A' |
215 | */ |
216 | tmp_3 = &Arduino_skal_P.A_Value[0]; |
217 | tmp = Arduino_skal_B.MemoryX[0]; |
218 | tmp_0 = Arduino_skal_B.MemoryX[1]; |
219 | tmp_1 = Arduino_skal_B.MemoryX[2]; |
220 | tmp_2 = Arduino_skal_B.MemoryX[3]; |
221 | for (i = 0; i < 4; i++) { |
222 | u0 = tmp_3[i] * tmp; |
223 | u0 += tmp_3[i + 4] * tmp_0; |
224 | u0 += tmp_3[i + 8] * tmp_1; |
225 | u0 += tmp_3[i + 12] * tmp_2; |
226 | |
227 | /* Product: '<S22>/A[k]*xhat[k|k-1]' */ |
228 | Arduino_skal_B.Akxhatkk1[i] = u0; |
229 | } |
230 | |
231 | /* End of Product: '<S22>/A[k]*xhat[k|k-1]' */ |
232 | |
233 | /* Step: '<Root>/Step' */ |
234 | currentTime = (&Arduino_skal_M)->Timing.t[0]; |
235 | if (currentTime < Arduino_skal_P.Step_Time) { |
236 | /* Step: '<Root>/Step' */ |
237 | Arduino_skal_B.Step = Arduino_skal_P.Step_Y0; |
238 | } else { |
239 | /* Step: '<Root>/Step' */ |
240 | Arduino_skal_B.Step = Arduino_skal_P.Step_YFinal; |
241 | } |
242 | |
243 | /* End of Step: '<Root>/Step' */ |
244 | |
245 | /* Gain: '<Root>/Kr' */ |
246 | Arduino_skal_B.Kr = Arduino_skal_P.Kr * Arduino_skal_B.Step; |
247 | |
248 | /* Sum: '<Root>/Sum5' */ |
249 | Arduino_skal_B.Sum5 = Arduino_skal_B.Kr - Arduino_skal_B.Gain; |
250 | |
251 | /* Saturate: '<Root>/Saturation' */ |
252 | u0 = Arduino_skal_B.Sum5; |
253 | tmp = Arduino_skal_P.Saturation_LowerSat; |
254 | tmp_0 = Arduino_skal_P.Saturation_UpperSat; |
255 | if (u0 > tmp_0) { |
256 | /* Saturate: '<Root>/Saturation' */ |
257 | Arduino_skal_B.Saturation = tmp_0; |
258 | } else if (u0 < tmp) { |
259 | /* Saturate: '<Root>/Saturation' */ |
260 | Arduino_skal_B.Saturation = tmp; |
261 | } else { |
262 | /* Saturate: '<Root>/Saturation' */ |
263 | Arduino_skal_B.Saturation = u0; |
264 | } |
265 | |
266 | /* End of Saturate: '<Root>/Saturation' */ |
267 | |
268 | /* Product: '<S22>/B[k]*u[k]' incorporates: |
269 | * Constant: '<S1>/B' |
270 | */ |
271 | currentTime = Arduino_skal_B.Saturation; |
272 | u0 = Arduino_skal_P.B_Value[0]; |
273 | |
274 | /* Product: '<S22>/B[k]*u[k]' */ |
275 | Arduino_skal_B.Bkuk[0] = u0 * currentTime; |
276 | |
277 | /* Product: '<S22>/B[k]*u[k]' incorporates: |
278 | * Constant: '<S1>/B' |
279 | */ |
280 | u0 = Arduino_skal_P.B_Value[1]; |
281 | |
282 | /* Product: '<S22>/B[k]*u[k]' */ |
283 | Arduino_skal_B.Bkuk[1] = u0 * currentTime; |
284 | |
285 | /* Product: '<S22>/B[k]*u[k]' incorporates: |
286 | * Constant: '<S1>/B' |
287 | */ |
288 | u0 = Arduino_skal_P.B_Value[2]; |
289 | |
290 | /* Product: '<S22>/B[k]*u[k]' */ |
291 | Arduino_skal_B.Bkuk[2] = u0 * currentTime; |
292 | |
293 | /* Product: '<S22>/B[k]*u[k]' incorporates: |
294 | * Constant: '<S1>/B' |
295 | */ |
296 | u0 = Arduino_skal_P.B_Value[3]; |
297 | |
298 | /* Product: '<S22>/B[k]*u[k]' */ |
299 | Arduino_skal_B.Bkuk[3] = u0 * currentTime; |
300 | |
301 | /* Outputs for Enabled SubSystem: '<S22>/MeasurementUpdate' incorporates: |
302 | * EnablePort: '<S53>/Enable' |
303 | */ |
304 | if (rtmIsMajorTimeStep((&Arduino_skal_M)) && rtmIsMajorTimeStep |
305 | ((&Arduino_skal_M))) { |
306 | /* Constant: '<S1>/Enable' */ |
307 | if (Arduino_skal_P.Enable_Value) { |
308 | Arduino_skal_DW.MeasurementUpdate_MODE = true; |
309 | } else if (Arduino_skal_DW.MeasurementUpdate_MODE) { |
310 | /* Disable for Product: '<S53>/Product3' incorporates: |
311 | * Outport: '<S53>/L*(y[k]-yhat[k|k-1])' |
312 | */ |
313 | Arduino_skal_B.Product3[0] = Arduino_skal_P.Lykyhatkk1_Y0; |
314 | Arduino_skal_B.Product3[1] = Arduino_skal_P.Lykyhatkk1_Y0; |
315 | Arduino_skal_B.Product3[2] = Arduino_skal_P.Lykyhatkk1_Y0; |
316 | Arduino_skal_B.Product3[3] = Arduino_skal_P.Lykyhatkk1_Y0; |
317 | Arduino_skal_DW.MeasurementUpdate_MODE = false; |
318 | } |
319 | |
320 | /* End of Constant: '<S1>/Enable' */ |
321 | } |
322 | |
323 | if (Arduino_skal_DW.MeasurementUpdate_MODE) { |
324 | /* Product: '<S53>/C[k]*xhat[k|k-1]' incorporates: |
325 | * Constant: '<S1>/C' |
326 | * Product: '<S53>/Product3' |
327 | */ |
328 | tmp_3 = &Arduino_skal_P.C_Value[0]; |
329 | tmp = Arduino_skal_B.MemoryX[0]; |
330 | tmp_0 = Arduino_skal_B.MemoryX[1]; |
331 | tmp_1 = Arduino_skal_B.MemoryX[2]; |
332 | tmp_2 = Arduino_skal_B.MemoryX[3]; |
333 | |
334 | /* Product: '<S53>/D[k]*u[k]' */ |
335 | currentTime = Arduino_skal_B.Saturation; |
336 | for (i = 0; i < 2; i++) { |
337 | /* Product: '<S53>/C[k]*xhat[k|k-1]' */ |
338 | u0 = tmp_3[i] * tmp; |
339 | u0 += tmp_3[i + 2] * tmp_0; |
340 | u0 += tmp_3[i + 4] * tmp_1; |
341 | u0 += tmp_3[i + 6] * tmp_2; |
342 | |
343 | /* Product: '<S53>/C[k]*xhat[k|k-1]' */ |
344 | Arduino_skal_B.Ckxhatkk1[i] = u0; |
345 | |
346 | /* Product: '<S53>/D[k]*u[k]' incorporates: |
347 | * Constant: '<S1>/D' |
348 | */ |
349 | u0 = Arduino_skal_P.D_Value[i]; |
350 | |
351 | /* Product: '<S53>/D[k]*u[k]' */ |
352 | Arduino_skal_B.Dkuk[i] = u0 * currentTime; |
353 | |
354 | /* Sum: '<S53>/Add1' incorporates: |
355 | * Product: '<S53>/D[k]*u[k]' |
356 | */ |
357 | Arduino_skal_B.yhatkk1[i] = Arduino_skal_B.Ckxhatkk1[i] + |
358 | Arduino_skal_B.Dkuk[i]; |
359 | |
360 | /* Sum: '<S53>/Sum' incorporates: |
361 | * Constant: '<Root>/Constant' |
362 | * Sum: '<S53>/Add1' |
363 | */ |
364 | Arduino_skal_B.Sum[i] = Arduino_skal_P.Constant_Value[i] - |
365 | Arduino_skal_B.yhatkk1[i]; |
366 | } |
367 | |
368 | /* Product: '<S53>/Product3' incorporates: |
369 | * Constant: '<S2>/KalmanGainL' |
370 | * Product: '<S53>/C[k]*xhat[k|k-1]' |
371 | * Sum: '<S53>/Sum' |
372 | */ |
373 | tmp_3 = &Arduino_skal_P.KalmanGainL_Value[0]; |
374 | tmp = Arduino_skal_B.Sum[0]; |
375 | tmp_0 = Arduino_skal_B.Sum[1]; |
376 | for (i = 0; i < 4; i++) { |
377 | /* Product: '<S53>/Product3' */ |
378 | Arduino_skal_B.Product3[i] = 0.0; |
379 | Arduino_skal_B.Product3[i] += tmp_3[i] * tmp; |
380 | Arduino_skal_B.Product3[i] += tmp_3[i + 4] * tmp_0; |
381 | } |
382 | } |
383 | |
384 | /* End of Outputs for SubSystem: '<S22>/MeasurementUpdate' */ |
385 | |
386 | /* Sum: '<S22>/Add' incorporates: |
387 | * Product: '<S22>/B[k]*u[k]' |
388 | * Product: '<S53>/Product3' |
389 | */ |
390 | Arduino_skal_B.Add[0] = (Arduino_skal_B.Bkuk[0] + Arduino_skal_B.Akxhatkk1[0]) |
391 | + Arduino_skal_B.Product3[0]; |
392 | Arduino_skal_B.Add[1] = (Arduino_skal_B.Bkuk[1] + Arduino_skal_B.Akxhatkk1[1]) |
393 | + Arduino_skal_B.Product3[1]; |
394 | Arduino_skal_B.Add[2] = (Arduino_skal_B.Bkuk[2] + Arduino_skal_B.Akxhatkk1[2]) |
395 | + Arduino_skal_B.Product3[2]; |
396 | Arduino_skal_B.Add[3] = (Arduino_skal_B.Bkuk[3] + Arduino_skal_B.Akxhatkk1[3]) |
397 | + Arduino_skal_B.Product3[3]; |
398 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
399 | /* Matfile logging */ |
400 | rt_UpdateTXYLogVars((&Arduino_skal_M)->rtwLogInfo, ((&Arduino_skal_M) |
401 | ->Timing.t)); |
402 | } /* end MajorTimeStep */ |
403 | |
404 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
405 | /* Update for Integrator: '<S1>/MemoryX' */ |
406 | Arduino_skal_DW.MemoryX_IWORK = 0; |
407 | } /* end MajorTimeStep */ |
408 | |
409 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
410 | /* signal main to stop simulation */ |
411 | { /* Sample time: [0.0s, 0.0s] */ |
412 | if ((rtmGetTFinal((&Arduino_skal_M))!=-1) && |
413 | !((rtmGetTFinal((&Arduino_skal_M))-((((&Arduino_skal_M) |
414 | ->Timing.clockTick1+(&Arduino_skal_M)->Timing.clockTickH1* |
415 | 4294967296.0)) * 0.2)) > ((((&Arduino_skal_M)->Timing.clockTick1+ |
416 | (&Arduino_skal_M)->Timing.clockTickH1* 4294967296.0)) * 0.2) * |
417 | (DBL_EPSILON))) { |
418 | rtmSetErrorStatus((&Arduino_skal_M), "Simulation finished"); |
419 | } |
420 | } |
421 | |
422 | rt_ertODEUpdateContinuousStates(&(&Arduino_skal_M)->solverInfo); |
423 | |
424 | /* Update absolute time for base rate */ |
425 | /* The "clockTick0" counts the number of times the code of this task has |
426 | * been executed. The absolute time is the multiplication of "clockTick0" |
427 | * and "Timing.stepSize0". Size of "clockTick0" ensures timer will not |
428 | * overflow during the application lifespan selected. |
429 | * Timer of this task consists of two 32 bit unsigned integers. |
430 | * The two integers represent the low bits Timing.clockTick0 and the high bits |
431 | * Timing.clockTickH0. When the low bit overflows to 0, the high bits increment. |
432 | */ |
433 | if (!(++(&Arduino_skal_M)->Timing.clockTick0)) { |
434 | ++(&Arduino_skal_M)->Timing.clockTickH0; |
435 | } |
436 | |
437 | (&Arduino_skal_M)->Timing.t[0] = rtsiGetSolverStopTime(&(&Arduino_skal_M) |
438 | ->solverInfo); |
439 | |
440 | { |
441 | /* Update absolute timer for sample time: [0.2s, 0.0s] */ |
442 | /* The "clockTick1" counts the number of times the code of this task has |
443 | * been executed. The resolution of this integer timer is 0.2, which is the step size |
444 | * of the task. Size of "clockTick1" ensures timer will not overflow during the |
445 | * application lifespan selected. |
446 | * Timer of this task consists of two 32 bit unsigned integers. |
447 | * The two integers represent the low bits Timing.clockTick1 and the high bits |
448 | * Timing.clockTickH1. When the low bit overflows to 0, the high bits increment. |
449 | */ |
450 | (&Arduino_skal_M)->Timing.clockTick1++; |
451 | if (!(&Arduino_skal_M)->Timing.clockTick1) { |
452 | (&Arduino_skal_M)->Timing.clockTickH1++; |
453 | } |
454 | } |
455 | } /* end MajorTimeStep */ |
456 | } |
457 | |
458 | /* Derivatives for root system: '<Root>' */ |
459 | void Arduino_skalModelClass::Arduino_skal_derivatives() |
460 | { |
461 | XDot_Arduino_skal_T *_rtXdot; |
462 | _rtXdot = ((XDot_Arduino_skal_T *) (&Arduino_skal_M)->derivs); |
463 | |
464 | /* Derivatives for Integrator: '<S1>/MemoryX' */ |
465 | _rtXdot->MemoryX_CSTATE[0] = Arduino_skal_B.Add[0]; |
466 | _rtXdot->MemoryX_CSTATE[1] = Arduino_skal_B.Add[1]; |
467 | _rtXdot->MemoryX_CSTATE[2] = Arduino_skal_B.Add[2]; |
468 | _rtXdot->MemoryX_CSTATE[3] = Arduino_skal_B.Add[3]; |
469 | } |
470 | |
471 | /* Model initialize function */ |
472 | void Arduino_skalModelClass::initialize() |
473 | { |
474 | /* Registration code */ |
475 | |
476 | /* initialize non-finites */ |
477 | rt_InitInfAndNaN(sizeof(real_T)); |
478 | |
479 | { |
480 | /* Setup solver object */ |
481 | rtsiSetSimTimeStepPtr(&(&Arduino_skal_M)->solverInfo, &(&Arduino_skal_M) |
482 | ->Timing.simTimeStep); |
483 | rtsiSetTPtr(&(&Arduino_skal_M)->solverInfo, &rtmGetTPtr((&Arduino_skal_M))); |
484 | rtsiSetStepSizePtr(&(&Arduino_skal_M)->solverInfo, &(&Arduino_skal_M) |
485 | ->Timing.stepSize0); |
486 | rtsiSetdXPtr(&(&Arduino_skal_M)->solverInfo, &(&Arduino_skal_M)->derivs); |
487 | rtsiSetContStatesPtr(&(&Arduino_skal_M)->solverInfo, (real_T **) |
488 | &(&Arduino_skal_M)->contStates); |
489 | rtsiSetNumContStatesPtr(&(&Arduino_skal_M)->solverInfo, &(&Arduino_skal_M) |
490 | ->Sizes.numContStates); |
491 | rtsiSetNumPeriodicContStatesPtr(&(&Arduino_skal_M)->solverInfo, |
492 | &(&Arduino_skal_M)->Sizes.numPeriodicContStates); |
493 | rtsiSetPeriodicContStateIndicesPtr(&(&Arduino_skal_M)->solverInfo, |
494 | &(&Arduino_skal_M)->periodicContStateIndices); |
495 | rtsiSetPeriodicContStateRangesPtr(&(&Arduino_skal_M)->solverInfo, |
496 | &(&Arduino_skal_M)->periodicContStateRanges); |
497 | rtsiSetErrorStatusPtr(&(&Arduino_skal_M)->solverInfo, (&rtmGetErrorStatus |
498 | ((&Arduino_skal_M)))); |
499 | rtsiSetRTModelPtr(&(&Arduino_skal_M)->solverInfo, (&Arduino_skal_M)); |
500 | } |
501 | |
502 | rtsiSetSimTimeStep(&(&Arduino_skal_M)->solverInfo, MAJOR_TIME_STEP); |
503 | (&Arduino_skal_M)->intgData.y = (&Arduino_skal_M)->odeY; |
504 | (&Arduino_skal_M)->intgData.f[0] = (&Arduino_skal_M)->odeF[0]; |
505 | (&Arduino_skal_M)->intgData.f[1] = (&Arduino_skal_M)->odeF[1]; |
506 | (&Arduino_skal_M)->intgData.f[2] = (&Arduino_skal_M)->odeF[2]; |
507 | (&Arduino_skal_M)->contStates = ((X_Arduino_skal_T *) &Arduino_skal_X); |
508 | rtsiSetSolverData(&(&Arduino_skal_M)->solverInfo, static_cast<void *> |
509 | (&(&Arduino_skal_M)->intgData)); |
510 | rtsiSetSolverName(&(&Arduino_skal_M)->solverInfo,"ode3"); |
511 | rtmSetTPtr((&Arduino_skal_M), &(&Arduino_skal_M)->Timing.tArray[0]); |
512 | rtmSetTFinal((&Arduino_skal_M), 10.0); |
513 | (&Arduino_skal_M)->Timing.stepSize0 = 0.2; |
514 | rtmSetFirstInitCond((&Arduino_skal_M), 1); |
515 | |
516 | /* Setup for data logging */ |
517 | { |
518 | static RTWLogInfo rt_DataLoggingInfo; |
519 | rt_DataLoggingInfo.loggingInterval = (NULL); |
520 | (&Arduino_skal_M)->rtwLogInfo = &rt_DataLoggingInfo; |
521 | } |
522 | |
523 | /* Setup for data logging */ |
524 | { |
525 | rtliSetLogXSignalInfo((&Arduino_skal_M)->rtwLogInfo, (NULL)); |
526 | rtliSetLogXSignalPtrs((&Arduino_skal_M)->rtwLogInfo, (NULL)); |
527 | rtliSetLogT((&Arduino_skal_M)->rtwLogInfo, "tout"); |
528 | rtliSetLogX((&Arduino_skal_M)->rtwLogInfo, ""); |
529 | rtliSetLogXFinal((&Arduino_skal_M)->rtwLogInfo, ""); |
530 | rtliSetLogVarNameModifier((&Arduino_skal_M)->rtwLogInfo, "rt_"); |
531 | rtliSetLogFormat((&Arduino_skal_M)->rtwLogInfo, 4); |
532 | rtliSetLogMaxRows((&Arduino_skal_M)->rtwLogInfo, 0); |
533 | rtliSetLogDecimation((&Arduino_skal_M)->rtwLogInfo, 1); |
534 | rtliSetLogY((&Arduino_skal_M)->rtwLogInfo, ""); |
535 | rtliSetLogYSignalInfo((&Arduino_skal_M)->rtwLogInfo, (NULL)); |
536 | rtliSetLogYSignalPtrs((&Arduino_skal_M)->rtwLogInfo, (NULL)); |
537 | } |
538 | |
539 | /* Matfile logging */ |
540 | rt_StartDataLoggingWithStartTime((&Arduino_skal_M)->rtwLogInfo, 0.0, |
541 | rtmGetTFinal((&Arduino_skal_M)), (&Arduino_skal_M)->Timing.stepSize0, |
542 | (&rtmGetErrorStatus((&Arduino_skal_M)))); |
543 | |
544 | /* Start for Constant: '<S1>/X0' */ |
545 | Arduino_skal_B.X0[0] = Arduino_skal_P.X0_Value[0]; |
546 | Arduino_skal_B.X0[1] = Arduino_skal_P.X0_Value[1]; |
547 | Arduino_skal_B.X0[2] = Arduino_skal_P.X0_Value[2]; |
548 | Arduino_skal_B.X0[3] = Arduino_skal_P.X0_Value[3]; |
549 | |
550 | /* InitializeConditions for Integrator: '<S1>/MemoryX' */ |
551 | if (rtmIsFirstInitCond((&Arduino_skal_M))) { |
552 | Arduino_skal_X.MemoryX_CSTATE[0] = 0.0; |
553 | Arduino_skal_X.MemoryX_CSTATE[1] = 0.0; |
554 | Arduino_skal_X.MemoryX_CSTATE[2] = 0.0; |
555 | Arduino_skal_X.MemoryX_CSTATE[3] = 0.0; |
556 | } |
557 | |
558 | Arduino_skal_DW.MemoryX_IWORK = 1; |
559 | |
560 | /* End of InitializeConditions for Integrator: '<S1>/MemoryX' */ |
561 | |
562 | /* SystemInitialize for Enabled SubSystem: '<S22>/MeasurementUpdate' */ |
563 | /* SystemInitialize for Product: '<S53>/Product3' incorporates: |
564 | * Outport: '<S53>/L*(y[k]-yhat[k|k-1])' |
565 | */ |
566 | Arduino_skal_B.Product3[0] = Arduino_skal_P.Lykyhatkk1_Y0; |
567 | Arduino_skal_B.Product3[1] = Arduino_skal_P.Lykyhatkk1_Y0; |
568 | Arduino_skal_B.Product3[2] = Arduino_skal_P.Lykyhatkk1_Y0; |
569 | Arduino_skal_B.Product3[3] = Arduino_skal_P.Lykyhatkk1_Y0; |
570 | |
571 | /* End of SystemInitialize for SubSystem: '<S22>/MeasurementUpdate' */ |
572 | |
573 | /* set "at time zero" to false */ |
574 | if (rtmIsFirstInitCond((&Arduino_skal_M))) { |
575 | rtmSetFirstInitCond((&Arduino_skal_M), 0); |
576 | } |
577 | } |
578 | |
579 | /* Model terminate function */ |
580 | void Arduino_skalModelClass::terminate() |
581 | { |
582 | /* (no terminate code required) */ |
583 | } |
584 | |
585 | /* Constructor */ |
586 | Arduino_skalModelClass::Arduino_skalModelClass() : |
587 | Arduino_skal_B(), |
588 | Arduino_skal_DW(), |
589 | Arduino_skal_X(), |
590 | Arduino_skal_M() |
591 | { |
592 | /* Currently there is no constructor body generated.*/ |
593 | } |
594 | |
595 | /* Destructor */ |
596 | Arduino_skalModelClass::~Arduino_skalModelClass() |
597 | { |
598 | /* Currently there is no destructor body generated.*/ |
599 | } |
600 | |
601 | /* Real-Time Model get method */ |
602 | RT_MODEL_Arduino_skal_T * Arduino_skalModelClass::getRTM() |
603 | { |
604 | return (&Arduino_skal_M); |
605 | } |
606 | |