| 1 | /* |
| 2 | * Arduino_skal.cpp |
| 3 | * |
| 4 | * Academic License - for use in teaching, academic research, and meeting |
| 5 | * course requirements at degree granting institutions only. Not for |
| 6 | * government, commercial, or other organizational use. |
| 7 | * |
| 8 | * Code generation for model "Arduino_skal". |
| 9 | * |
| 10 | * Model version : 1.1 |
| 11 | * Simulink Coder version : 9.5 (R2021a) 14-Nov-2020 |
| 12 | * C++ source code generated on : Thu Apr 15 15:56:50 2021 |
| 13 | * |
| 14 | * Target selection: grt.tlc |
| 15 | * Note: GRT includes extra infrastructure and instrumentation for prototyping |
| 16 | * Embedded hardware selection: Intel->x86-64 (Windows64) |
| 17 | * Code generation objective: Debugging |
| 18 | * Validation result: Not run |
| 19 | */ |
| 20 | |
| 21 | #include "Arduino_skal.h" |
| 22 | #include "Arduino_skal_private.h" |
| 23 | |
| 24 | /* |
| 25 | * This function updates continuous states using the ODE3 fixed-step |
| 26 | * solver algorithm |
| 27 | */ |
| 28 | void Arduino_skalModelClass::rt_ertODEUpdateContinuousStates(RTWSolverInfo *si ) |
| 29 | { |
| 30 | /* Solver Matrices */ |
| 31 | static const real_T rt_ODE3_A[3] = { |
| 32 | 1.0/2.0, 3.0/4.0, 1.0 |
| 33 | }; |
| 34 | |
| 35 | static const real_T rt_ODE3_B[3][3] = { |
| 36 | { 1.0/2.0, 0.0, 0.0 }, |
| 37 | |
| 38 | { 0.0, 3.0/4.0, 0.0 }, |
| 39 | |
| 40 | { 2.0/9.0, 1.0/3.0, 4.0/9.0 } |
| 41 | }; |
| 42 | |
| 43 | time_T t = rtsiGetT(si); |
| 44 | time_T tnew = rtsiGetSolverStopTime(si); |
| 45 | time_T h = rtsiGetStepSize(si); |
| 46 | real_T *x = rtsiGetContStates(si); |
| 47 | ODE3_IntgData *id = static_cast<ODE3_IntgData *>(rtsiGetSolverData(si)); |
| 48 | real_T *y = id->y; |
| 49 | real_T *f0 = id->f[0]; |
| 50 | real_T *f1 = id->f[1]; |
| 51 | real_T *f2 = id->f[2]; |
| 52 | real_T hB[3]; |
| 53 | int_T i; |
| 54 | int_T nXc = 4; |
| 55 | rtsiSetSimTimeStep(si,MINOR_TIME_STEP); |
| 56 | |
| 57 | /* Save the state values at time t in y, we'll use x as ynew. */ |
| 58 | (void) std::memcpy(y, x, |
| 59 | static_cast<uint_T>(nXc)*sizeof(real_T)); |
| 60 | |
| 61 | /* Assumes that rtsiSetT and ModelOutputs are up-to-date */ |
| 62 | /* f0 = f(t,y) */ |
| 63 | rtsiSetdX(si, f0); |
| 64 | Arduino_skal_derivatives(); |
| 65 | |
| 66 | /* f(:,2) = feval(odefile, t + hA(1), y + f*hB(:,1), args(:)(*)); */ |
| 67 | hB[0] = h * rt_ODE3_B[0][0]; |
| 68 | for (i = 0; i < nXc; i++) { |
| 69 | x[i] = y[i] + (f0[i]*hB[0]); |
| 70 | } |
| 71 | |
| 72 | rtsiSetT(si, t + h*rt_ODE3_A[0]); |
| 73 | rtsiSetdX(si, f1); |
| 74 | this->step(); |
| 75 | Arduino_skal_derivatives(); |
| 76 | |
| 77 | /* f(:,3) = feval(odefile, t + hA(2), y + f*hB(:,2), args(:)(*)); */ |
| 78 | for (i = 0; i <= 1; i++) { |
| 79 | hB[i] = h * rt_ODE3_B[1][i]; |
| 80 | } |
| 81 | |
| 82 | for (i = 0; i < nXc; i++) { |
| 83 | x[i] = y[i] + (f0[i]*hB[0] + f1[i]*hB[1]); |
| 84 | } |
| 85 | |
| 86 | rtsiSetT(si, t + h*rt_ODE3_A[1]); |
| 87 | rtsiSetdX(si, f2); |
| 88 | this->step(); |
| 89 | Arduino_skal_derivatives(); |
| 90 | |
| 91 | /* tnew = t + hA(3); |
| 92 | ynew = y + f*hB(:,3); */ |
| 93 | for (i = 0; i <= 2; i++) { |
| 94 | hB[i] = h * rt_ODE3_B[2][i]; |
| 95 | } |
| 96 | |
| 97 | for (i = 0; i < nXc; i++) { |
| 98 | x[i] = y[i] + (f0[i]*hB[0] + f1[i]*hB[1] + f2[i]*hB[2]); |
| 99 | } |
| 100 | |
| 101 | rtsiSetT(si, tnew); |
| 102 | rtsiSetSimTimeStep(si,MAJOR_TIME_STEP); |
| 103 | } |
| 104 | |
| 105 | /* Model step function */ |
| 106 | void Arduino_skalModelClass::step() |
| 107 | { |
| 108 | const real_T *tmp_3; |
| 109 | real_T currentTime; |
| 110 | real_T tmp; |
| 111 | real_T tmp_0; |
| 112 | real_T tmp_1; |
| 113 | real_T tmp_2; |
| 114 | real_T u0; |
| 115 | int32_T i; |
| 116 | int32_T i_0; |
| 117 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
| 118 | /* set solver stop time */ |
| 119 | if (!((&Arduino_skal_M)->Timing.clockTick0+1)) { |
| 120 | rtsiSetSolverStopTime(&(&Arduino_skal_M)->solverInfo, (((&Arduino_skal_M |
| 121 | )->Timing.clockTickH0 + 1) * (&Arduino_skal_M)->Timing.stepSize0 * |
| 122 | 4294967296.0)); |
| 123 | } else { |
| 124 | rtsiSetSolverStopTime(&(&Arduino_skal_M)->solverInfo, (((&Arduino_skal_M |
| 125 | )->Timing.clockTick0 + 1) * (&Arduino_skal_M)->Timing.stepSize0 + |
| 126 | (&Arduino_skal_M)->Timing.clockTickH0 * (&Arduino_skal_M) |
| 127 | ->Timing.stepSize0 * 4294967296.0)); |
| 128 | } |
| 129 | } /* end MajorTimeStep */ |
| 130 | |
| 131 | /* Update absolute time of base rate at minor time step */ |
| 132 | if (rtmIsMinorTimeStep((&Arduino_skal_M))) { |
| 133 | (&Arduino_skal_M)->Timing.t[0] = rtsiGetT(&(&Arduino_skal_M)->solverInfo); |
| 134 | } |
| 135 | |
| 136 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
| 137 | /* Constant: '<S1>/X0' */ |
| 138 | Arduino_skal_B.X0[0] = Arduino_skal_P.X0_Value[0]; |
| 139 | Arduino_skal_B.X0[1] = Arduino_skal_P.X0_Value[1]; |
| 140 | Arduino_skal_B.X0[2] = Arduino_skal_P.X0_Value[2]; |
| 141 | Arduino_skal_B.X0[3] = Arduino_skal_P.X0_Value[3]; |
| 142 | } |
| 143 | |
| 144 | /* Integrator: '<S1>/MemoryX' */ |
| 145 | if (Arduino_skal_DW.MemoryX_IWORK != 0) { |
| 146 | Arduino_skal_X.MemoryX_CSTATE[0] = Arduino_skal_B.X0[0]; |
| 147 | Arduino_skal_X.MemoryX_CSTATE[1] = Arduino_skal_B.X0[1]; |
| 148 | Arduino_skal_X.MemoryX_CSTATE[2] = Arduino_skal_B.X0[2]; |
| 149 | Arduino_skal_X.MemoryX_CSTATE[3] = Arduino_skal_B.X0[3]; |
| 150 | } |
| 151 | |
| 152 | /* Integrator: '<S1>/MemoryX' */ |
| 153 | Arduino_skal_B.MemoryX[0] = Arduino_skal_X.MemoryX_CSTATE[0]; |
| 154 | |
| 155 | /* Gain: '<Root>/Gain' */ |
| 156 | u0 = Arduino_skal_P.K[0] * Arduino_skal_B.MemoryX[0]; |
| 157 | |
| 158 | /* Integrator: '<S1>/MemoryX' */ |
| 159 | Arduino_skal_B.MemoryX[1] = Arduino_skal_X.MemoryX_CSTATE[1]; |
| 160 | |
| 161 | /* Gain: '<Root>/Gain' */ |
| 162 | u0 += Arduino_skal_P.K[1] * Arduino_skal_B.MemoryX[1]; |
| 163 | |
| 164 | /* Integrator: '<S1>/MemoryX' */ |
| 165 | Arduino_skal_B.MemoryX[2] = Arduino_skal_X.MemoryX_CSTATE[2]; |
| 166 | |
| 167 | /* Gain: '<Root>/Gain' */ |
| 168 | u0 += Arduino_skal_P.K[2] * Arduino_skal_B.MemoryX[2]; |
| 169 | |
| 170 | /* Integrator: '<S1>/MemoryX' */ |
| 171 | Arduino_skal_B.MemoryX[3] = Arduino_skal_X.MemoryX_CSTATE[3]; |
| 172 | |
| 173 | /* Gain: '<Root>/Gain' */ |
| 174 | u0 += Arduino_skal_P.K[3] * Arduino_skal_B.MemoryX[3]; |
| 175 | |
| 176 | /* Gain: '<Root>/Gain' */ |
| 177 | Arduino_skal_B.Gain = u0; |
| 178 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
| 179 | /* MATLAB Function: '<S51>/SqrtUsedFcn' incorporates: |
| 180 | * Constant: '<S2>/CovarianceZ' |
| 181 | * Constant: '<S51>/isSqrtUsed' |
| 182 | */ |
| 183 | /* : if isSqrtUsed */ |
| 184 | if (Arduino_skal_P.isSqrtUsed_Value) { |
| 185 | /* : P = u*u.'; */ |
| 186 | for (i = 0; i < 4; i++) { |
| 187 | for (i_0 = 0; i_0 < 4; i_0++) { |
| 188 | Arduino_skal_B.P[i_0 + (i << 2)] = 0.0; |
| 189 | Arduino_skal_B.P[i_0 + (i << 2)] += |
| 190 | Arduino_skal_P.CovarianceZ_Value[i_0] * |
| 191 | Arduino_skal_P.CovarianceZ_Value[i]; |
| 192 | Arduino_skal_B.P[i_0 + (i << 2)] += |
| 193 | Arduino_skal_P.CovarianceZ_Value[i_0 + 4] * |
| 194 | Arduino_skal_P.CovarianceZ_Value[i + 4]; |
| 195 | Arduino_skal_B.P[i_0 + (i << 2)] += |
| 196 | Arduino_skal_P.CovarianceZ_Value[i_0 + 8] * |
| 197 | Arduino_skal_P.CovarianceZ_Value[i + 8]; |
| 198 | Arduino_skal_B.P[i_0 + (i << 2)] += |
| 199 | Arduino_skal_P.CovarianceZ_Value[i_0 + 12] * |
| 200 | Arduino_skal_P.CovarianceZ_Value[i + 12]; |
| 201 | } |
| 202 | } |
| 203 | } else { |
| 204 | /* : else */ |
| 205 | /* : P = u; */ |
| 206 | std::memcpy(&Arduino_skal_B.P[0], &Arduino_skal_P.CovarianceZ_Value[0], |
| 207 | sizeof(real_T) << 4U); |
| 208 | } |
| 209 | |
| 210 | /* End of MATLAB Function: '<S51>/SqrtUsedFcn' */ |
| 211 | } |
| 212 | |
| 213 | /* Product: '<S22>/A[k]*xhat[k|k-1]' incorporates: |
| 214 | * Constant: '<S1>/A' |
| 215 | */ |
| 216 | tmp_3 = &Arduino_skal_P.A_Value[0]; |
| 217 | tmp = Arduino_skal_B.MemoryX[0]; |
| 218 | tmp_0 = Arduino_skal_B.MemoryX[1]; |
| 219 | tmp_1 = Arduino_skal_B.MemoryX[2]; |
| 220 | tmp_2 = Arduino_skal_B.MemoryX[3]; |
| 221 | for (i = 0; i < 4; i++) { |
| 222 | u0 = tmp_3[i] * tmp; |
| 223 | u0 += tmp_3[i + 4] * tmp_0; |
| 224 | u0 += tmp_3[i + 8] * tmp_1; |
| 225 | u0 += tmp_3[i + 12] * tmp_2; |
| 226 | |
| 227 | /* Product: '<S22>/A[k]*xhat[k|k-1]' */ |
| 228 | Arduino_skal_B.Akxhatkk1[i] = u0; |
| 229 | } |
| 230 | |
| 231 | /* End of Product: '<S22>/A[k]*xhat[k|k-1]' */ |
| 232 | |
| 233 | /* Step: '<Root>/Step' */ |
| 234 | currentTime = (&Arduino_skal_M)->Timing.t[0]; |
| 235 | if (currentTime < Arduino_skal_P.Step_Time) { |
| 236 | /* Step: '<Root>/Step' */ |
| 237 | Arduino_skal_B.Step = Arduino_skal_P.Step_Y0; |
| 238 | } else { |
| 239 | /* Step: '<Root>/Step' */ |
| 240 | Arduino_skal_B.Step = Arduino_skal_P.Step_YFinal; |
| 241 | } |
| 242 | |
| 243 | /* End of Step: '<Root>/Step' */ |
| 244 | |
| 245 | /* Gain: '<Root>/Kr' */ |
| 246 | Arduino_skal_B.Kr = Arduino_skal_P.Kr * Arduino_skal_B.Step; |
| 247 | |
| 248 | /* Sum: '<Root>/Sum5' */ |
| 249 | Arduino_skal_B.Sum5 = Arduino_skal_B.Kr - Arduino_skal_B.Gain; |
| 250 | |
| 251 | /* Saturate: '<Root>/Saturation' */ |
| 252 | u0 = Arduino_skal_B.Sum5; |
| 253 | tmp = Arduino_skal_P.Saturation_LowerSat; |
| 254 | tmp_0 = Arduino_skal_P.Saturation_UpperSat; |
| 255 | if (u0 > tmp_0) { |
| 256 | /* Saturate: '<Root>/Saturation' */ |
| 257 | Arduino_skal_B.Saturation = tmp_0; |
| 258 | } else if (u0 < tmp) { |
| 259 | /* Saturate: '<Root>/Saturation' */ |
| 260 | Arduino_skal_B.Saturation = tmp; |
| 261 | } else { |
| 262 | /* Saturate: '<Root>/Saturation' */ |
| 263 | Arduino_skal_B.Saturation = u0; |
| 264 | } |
| 265 | |
| 266 | /* End of Saturate: '<Root>/Saturation' */ |
| 267 | |
| 268 | /* Product: '<S22>/B[k]*u[k]' incorporates: |
| 269 | * Constant: '<S1>/B' |
| 270 | */ |
| 271 | currentTime = Arduino_skal_B.Saturation; |
| 272 | u0 = Arduino_skal_P.B_Value[0]; |
| 273 | |
| 274 | /* Product: '<S22>/B[k]*u[k]' */ |
| 275 | Arduino_skal_B.Bkuk[0] = u0 * currentTime; |
| 276 | |
| 277 | /* Product: '<S22>/B[k]*u[k]' incorporates: |
| 278 | * Constant: '<S1>/B' |
| 279 | */ |
| 280 | u0 = Arduino_skal_P.B_Value[1]; |
| 281 | |
| 282 | /* Product: '<S22>/B[k]*u[k]' */ |
| 283 | Arduino_skal_B.Bkuk[1] = u0 * currentTime; |
| 284 | |
| 285 | /* Product: '<S22>/B[k]*u[k]' incorporates: |
| 286 | * Constant: '<S1>/B' |
| 287 | */ |
| 288 | u0 = Arduino_skal_P.B_Value[2]; |
| 289 | |
| 290 | /* Product: '<S22>/B[k]*u[k]' */ |
| 291 | Arduino_skal_B.Bkuk[2] = u0 * currentTime; |
| 292 | |
| 293 | /* Product: '<S22>/B[k]*u[k]' incorporates: |
| 294 | * Constant: '<S1>/B' |
| 295 | */ |
| 296 | u0 = Arduino_skal_P.B_Value[3]; |
| 297 | |
| 298 | /* Product: '<S22>/B[k]*u[k]' */ |
| 299 | Arduino_skal_B.Bkuk[3] = u0 * currentTime; |
| 300 | |
| 301 | /* Outputs for Enabled SubSystem: '<S22>/MeasurementUpdate' incorporates: |
| 302 | * EnablePort: '<S53>/Enable' |
| 303 | */ |
| 304 | if (rtmIsMajorTimeStep((&Arduino_skal_M)) && rtmIsMajorTimeStep |
| 305 | ((&Arduino_skal_M))) { |
| 306 | /* Constant: '<S1>/Enable' */ |
| 307 | if (Arduino_skal_P.Enable_Value) { |
| 308 | Arduino_skal_DW.MeasurementUpdate_MODE = true; |
| 309 | } else if (Arduino_skal_DW.MeasurementUpdate_MODE) { |
| 310 | /* Disable for Product: '<S53>/Product3' incorporates: |
| 311 | * Outport: '<S53>/L*(y[k]-yhat[k|k-1])' |
| 312 | */ |
| 313 | Arduino_skal_B.Product3[0] = Arduino_skal_P.Lykyhatkk1_Y0; |
| 314 | Arduino_skal_B.Product3[1] = Arduino_skal_P.Lykyhatkk1_Y0; |
| 315 | Arduino_skal_B.Product3[2] = Arduino_skal_P.Lykyhatkk1_Y0; |
| 316 | Arduino_skal_B.Product3[3] = Arduino_skal_P.Lykyhatkk1_Y0; |
| 317 | Arduino_skal_DW.MeasurementUpdate_MODE = false; |
| 318 | } |
| 319 | |
| 320 | /* End of Constant: '<S1>/Enable' */ |
| 321 | } |
| 322 | |
| 323 | if (Arduino_skal_DW.MeasurementUpdate_MODE) { |
| 324 | /* Product: '<S53>/C[k]*xhat[k|k-1]' incorporates: |
| 325 | * Constant: '<S1>/C' |
| 326 | * Product: '<S53>/Product3' |
| 327 | */ |
| 328 | tmp_3 = &Arduino_skal_P.C_Value[0]; |
| 329 | tmp = Arduino_skal_B.MemoryX[0]; |
| 330 | tmp_0 = Arduino_skal_B.MemoryX[1]; |
| 331 | tmp_1 = Arduino_skal_B.MemoryX[2]; |
| 332 | tmp_2 = Arduino_skal_B.MemoryX[3]; |
| 333 | |
| 334 | /* Product: '<S53>/D[k]*u[k]' */ |
| 335 | currentTime = Arduino_skal_B.Saturation; |
| 336 | for (i = 0; i < 2; i++) { |
| 337 | /* Product: '<S53>/C[k]*xhat[k|k-1]' */ |
| 338 | u0 = tmp_3[i] * tmp; |
| 339 | u0 += tmp_3[i + 2] * tmp_0; |
| 340 | u0 += tmp_3[i + 4] * tmp_1; |
| 341 | u0 += tmp_3[i + 6] * tmp_2; |
| 342 | |
| 343 | /* Product: '<S53>/C[k]*xhat[k|k-1]' */ |
| 344 | Arduino_skal_B.Ckxhatkk1[i] = u0; |
| 345 | |
| 346 | /* Product: '<S53>/D[k]*u[k]' incorporates: |
| 347 | * Constant: '<S1>/D' |
| 348 | */ |
| 349 | u0 = Arduino_skal_P.D_Value[i]; |
| 350 | |
| 351 | /* Product: '<S53>/D[k]*u[k]' */ |
| 352 | Arduino_skal_B.Dkuk[i] = u0 * currentTime; |
| 353 | |
| 354 | /* Sum: '<S53>/Add1' incorporates: |
| 355 | * Product: '<S53>/D[k]*u[k]' |
| 356 | */ |
| 357 | Arduino_skal_B.yhatkk1[i] = Arduino_skal_B.Ckxhatkk1[i] + |
| 358 | Arduino_skal_B.Dkuk[i]; |
| 359 | |
| 360 | /* Sum: '<S53>/Sum' incorporates: |
| 361 | * Constant: '<Root>/Constant' |
| 362 | * Sum: '<S53>/Add1' |
| 363 | */ |
| 364 | Arduino_skal_B.Sum[i] = Arduino_skal_P.Constant_Value[i] - |
| 365 | Arduino_skal_B.yhatkk1[i]; |
| 366 | } |
| 367 | |
| 368 | /* Product: '<S53>/Product3' incorporates: |
| 369 | * Constant: '<S2>/KalmanGainL' |
| 370 | * Product: '<S53>/C[k]*xhat[k|k-1]' |
| 371 | * Sum: '<S53>/Sum' |
| 372 | */ |
| 373 | tmp_3 = &Arduino_skal_P.KalmanGainL_Value[0]; |
| 374 | tmp = Arduino_skal_B.Sum[0]; |
| 375 | tmp_0 = Arduino_skal_B.Sum[1]; |
| 376 | for (i = 0; i < 4; i++) { |
| 377 | /* Product: '<S53>/Product3' */ |
| 378 | Arduino_skal_B.Product3[i] = 0.0; |
| 379 | Arduino_skal_B.Product3[i] += tmp_3[i] * tmp; |
| 380 | Arduino_skal_B.Product3[i] += tmp_3[i + 4] * tmp_0; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | /* End of Outputs for SubSystem: '<S22>/MeasurementUpdate' */ |
| 385 | |
| 386 | /* Sum: '<S22>/Add' incorporates: |
| 387 | * Product: '<S22>/B[k]*u[k]' |
| 388 | * Product: '<S53>/Product3' |
| 389 | */ |
| 390 | Arduino_skal_B.Add[0] = (Arduino_skal_B.Bkuk[0] + Arduino_skal_B.Akxhatkk1[0]) |
| 391 | + Arduino_skal_B.Product3[0]; |
| 392 | Arduino_skal_B.Add[1] = (Arduino_skal_B.Bkuk[1] + Arduino_skal_B.Akxhatkk1[1]) |
| 393 | + Arduino_skal_B.Product3[1]; |
| 394 | Arduino_skal_B.Add[2] = (Arduino_skal_B.Bkuk[2] + Arduino_skal_B.Akxhatkk1[2]) |
| 395 | + Arduino_skal_B.Product3[2]; |
| 396 | Arduino_skal_B.Add[3] = (Arduino_skal_B.Bkuk[3] + Arduino_skal_B.Akxhatkk1[3]) |
| 397 | + Arduino_skal_B.Product3[3]; |
| 398 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
| 399 | /* Matfile logging */ |
| 400 | rt_UpdateTXYLogVars((&Arduino_skal_M)->rtwLogInfo, ((&Arduino_skal_M) |
| 401 | ->Timing.t)); |
| 402 | } /* end MajorTimeStep */ |
| 403 | |
| 404 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
| 405 | /* Update for Integrator: '<S1>/MemoryX' */ |
| 406 | Arduino_skal_DW.MemoryX_IWORK = 0; |
| 407 | } /* end MajorTimeStep */ |
| 408 | |
| 409 | if (rtmIsMajorTimeStep((&Arduino_skal_M))) { |
| 410 | /* signal main to stop simulation */ |
| 411 | { /* Sample time: [0.0s, 0.0s] */ |
| 412 | if ((rtmGetTFinal((&Arduino_skal_M))!=-1) && |
| 413 | !((rtmGetTFinal((&Arduino_skal_M))-((((&Arduino_skal_M) |
| 414 | ->Timing.clockTick1+(&Arduino_skal_M)->Timing.clockTickH1* |
| 415 | 4294967296.0)) * 0.2)) > ((((&Arduino_skal_M)->Timing.clockTick1+ |
| 416 | (&Arduino_skal_M)->Timing.clockTickH1* 4294967296.0)) * 0.2) * |
| 417 | (DBL_EPSILON))) { |
| 418 | rtmSetErrorStatus((&Arduino_skal_M), "Simulation finished"); |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | rt_ertODEUpdateContinuousStates(&(&Arduino_skal_M)->solverInfo); |
| 423 | |
| 424 | /* Update absolute time for base rate */ |
| 425 | /* The "clockTick0" counts the number of times the code of this task has |
| 426 | * been executed. The absolute time is the multiplication of "clockTick0" |
| 427 | * and "Timing.stepSize0". Size of "clockTick0" ensures timer will not |
| 428 | * overflow during the application lifespan selected. |
| 429 | * Timer of this task consists of two 32 bit unsigned integers. |
| 430 | * The two integers represent the low bits Timing.clockTick0 and the high bits |
| 431 | * Timing.clockTickH0. When the low bit overflows to 0, the high bits increment. |
| 432 | */ |
| 433 | if (!(++(&Arduino_skal_M)->Timing.clockTick0)) { |
| 434 | ++(&Arduino_skal_M)->Timing.clockTickH0; |
| 435 | } |
| 436 | |
| 437 | (&Arduino_skal_M)->Timing.t[0] = rtsiGetSolverStopTime(&(&Arduino_skal_M) |
| 438 | ->solverInfo); |
| 439 | |
| 440 | { |
| 441 | /* Update absolute timer for sample time: [0.2s, 0.0s] */ |
| 442 | /* The "clockTick1" counts the number of times the code of this task has |
| 443 | * been executed. The resolution of this integer timer is 0.2, which is the step size |
| 444 | * of the task. Size of "clockTick1" ensures timer will not overflow during the |
| 445 | * application lifespan selected. |
| 446 | * Timer of this task consists of two 32 bit unsigned integers. |
| 447 | * The two integers represent the low bits Timing.clockTick1 and the high bits |
| 448 | * Timing.clockTickH1. When the low bit overflows to 0, the high bits increment. |
| 449 | */ |
| 450 | (&Arduino_skal_M)->Timing.clockTick1++; |
| 451 | if (!(&Arduino_skal_M)->Timing.clockTick1) { |
| 452 | (&Arduino_skal_M)->Timing.clockTickH1++; |
| 453 | } |
| 454 | } |
| 455 | } /* end MajorTimeStep */ |
| 456 | } |
| 457 | |
| 458 | /* Derivatives for root system: '<Root>' */ |
| 459 | void Arduino_skalModelClass::Arduino_skal_derivatives() |
| 460 | { |
| 461 | XDot_Arduino_skal_T *_rtXdot; |
| 462 | _rtXdot = ((XDot_Arduino_skal_T *) (&Arduino_skal_M)->derivs); |
| 463 | |
| 464 | /* Derivatives for Integrator: '<S1>/MemoryX' */ |
| 465 | _rtXdot->MemoryX_CSTATE[0] = Arduino_skal_B.Add[0]; |
| 466 | _rtXdot->MemoryX_CSTATE[1] = Arduino_skal_B.Add[1]; |
| 467 | _rtXdot->MemoryX_CSTATE[2] = Arduino_skal_B.Add[2]; |
| 468 | _rtXdot->MemoryX_CSTATE[3] = Arduino_skal_B.Add[3]; |
| 469 | } |
| 470 | |
| 471 | /* Model initialize function */ |
| 472 | void Arduino_skalModelClass::initialize() |
| 473 | { |
| 474 | /* Registration code */ |
| 475 | |
| 476 | /* initialize non-finites */ |
| 477 | rt_InitInfAndNaN(sizeof(real_T)); |
| 478 | |
| 479 | { |
| 480 | /* Setup solver object */ |
| 481 | rtsiSetSimTimeStepPtr(&(&Arduino_skal_M)->solverInfo, &(&Arduino_skal_M) |
| 482 | ->Timing.simTimeStep); |
| 483 | rtsiSetTPtr(&(&Arduino_skal_M)->solverInfo, &rtmGetTPtr((&Arduino_skal_M))); |
| 484 | rtsiSetStepSizePtr(&(&Arduino_skal_M)->solverInfo, &(&Arduino_skal_M) |
| 485 | ->Timing.stepSize0); |
| 486 | rtsiSetdXPtr(&(&Arduino_skal_M)->solverInfo, &(&Arduino_skal_M)->derivs); |
| 487 | rtsiSetContStatesPtr(&(&Arduino_skal_M)->solverInfo, (real_T **) |
| 488 | &(&Arduino_skal_M)->contStates); |
| 489 | rtsiSetNumContStatesPtr(&(&Arduino_skal_M)->solverInfo, &(&Arduino_skal_M) |
| 490 | ->Sizes.numContStates); |
| 491 | rtsiSetNumPeriodicContStatesPtr(&(&Arduino_skal_M)->solverInfo, |
| 492 | &(&Arduino_skal_M)->Sizes.numPeriodicContStates); |
| 493 | rtsiSetPeriodicContStateIndicesPtr(&(&Arduino_skal_M)->solverInfo, |
| 494 | &(&Arduino_skal_M)->periodicContStateIndices); |
| 495 | rtsiSetPeriodicContStateRangesPtr(&(&Arduino_skal_M)->solverInfo, |
| 496 | &(&Arduino_skal_M)->periodicContStateRanges); |
| 497 | rtsiSetErrorStatusPtr(&(&Arduino_skal_M)->solverInfo, (&rtmGetErrorStatus |
| 498 | ((&Arduino_skal_M)))); |
| 499 | rtsiSetRTModelPtr(&(&Arduino_skal_M)->solverInfo, (&Arduino_skal_M)); |
| 500 | } |
| 501 | |
| 502 | rtsiSetSimTimeStep(&(&Arduino_skal_M)->solverInfo, MAJOR_TIME_STEP); |
| 503 | (&Arduino_skal_M)->intgData.y = (&Arduino_skal_M)->odeY; |
| 504 | (&Arduino_skal_M)->intgData.f[0] = (&Arduino_skal_M)->odeF[0]; |
| 505 | (&Arduino_skal_M)->intgData.f[1] = (&Arduino_skal_M)->odeF[1]; |
| 506 | (&Arduino_skal_M)->intgData.f[2] = (&Arduino_skal_M)->odeF[2]; |
| 507 | (&Arduino_skal_M)->contStates = ((X_Arduino_skal_T *) &Arduino_skal_X); |
| 508 | rtsiSetSolverData(&(&Arduino_skal_M)->solverInfo, static_cast<void *> |
| 509 | (&(&Arduino_skal_M)->intgData)); |
| 510 | rtsiSetSolverName(&(&Arduino_skal_M)->solverInfo,"ode3"); |
| 511 | rtmSetTPtr((&Arduino_skal_M), &(&Arduino_skal_M)->Timing.tArray[0]); |
| 512 | rtmSetTFinal((&Arduino_skal_M), 10.0); |
| 513 | (&Arduino_skal_M)->Timing.stepSize0 = 0.2; |
| 514 | rtmSetFirstInitCond((&Arduino_skal_M), 1); |
| 515 | |
| 516 | /* Setup for data logging */ |
| 517 | { |
| 518 | static RTWLogInfo rt_DataLoggingInfo; |
| 519 | rt_DataLoggingInfo.loggingInterval = (NULL); |
| 520 | (&Arduino_skal_M)->rtwLogInfo = &rt_DataLoggingInfo; |
| 521 | } |
| 522 | |
| 523 | /* Setup for data logging */ |
| 524 | { |
| 525 | rtliSetLogXSignalInfo((&Arduino_skal_M)->rtwLogInfo, (NULL)); |
| 526 | rtliSetLogXSignalPtrs((&Arduino_skal_M)->rtwLogInfo, (NULL)); |
| 527 | rtliSetLogT((&Arduino_skal_M)->rtwLogInfo, "tout"); |
| 528 | rtliSetLogX((&Arduino_skal_M)->rtwLogInfo, ""); |
| 529 | rtliSetLogXFinal((&Arduino_skal_M)->rtwLogInfo, ""); |
| 530 | rtliSetLogVarNameModifier((&Arduino_skal_M)->rtwLogInfo, "rt_"); |
| 531 | rtliSetLogFormat((&Arduino_skal_M)->rtwLogInfo, 4); |
| 532 | rtliSetLogMaxRows((&Arduino_skal_M)->rtwLogInfo, 0); |
| 533 | rtliSetLogDecimation((&Arduino_skal_M)->rtwLogInfo, 1); |
| 534 | rtliSetLogY((&Arduino_skal_M)->rtwLogInfo, ""); |
| 535 | rtliSetLogYSignalInfo((&Arduino_skal_M)->rtwLogInfo, (NULL)); |
| 536 | rtliSetLogYSignalPtrs((&Arduino_skal_M)->rtwLogInfo, (NULL)); |
| 537 | } |
| 538 | |
| 539 | /* Matfile logging */ |
| 540 | rt_StartDataLoggingWithStartTime((&Arduino_skal_M)->rtwLogInfo, 0.0, |
| 541 | rtmGetTFinal((&Arduino_skal_M)), (&Arduino_skal_M)->Timing.stepSize0, |
| 542 | (&rtmGetErrorStatus((&Arduino_skal_M)))); |
| 543 | |
| 544 | /* Start for Constant: '<S1>/X0' */ |
| 545 | Arduino_skal_B.X0[0] = Arduino_skal_P.X0_Value[0]; |
| 546 | Arduino_skal_B.X0[1] = Arduino_skal_P.X0_Value[1]; |
| 547 | Arduino_skal_B.X0[2] = Arduino_skal_P.X0_Value[2]; |
| 548 | Arduino_skal_B.X0[3] = Arduino_skal_P.X0_Value[3]; |
| 549 | |
| 550 | /* InitializeConditions for Integrator: '<S1>/MemoryX' */ |
| 551 | if (rtmIsFirstInitCond((&Arduino_skal_M))) { |
| 552 | Arduino_skal_X.MemoryX_CSTATE[0] = 0.0; |
| 553 | Arduino_skal_X.MemoryX_CSTATE[1] = 0.0; |
| 554 | Arduino_skal_X.MemoryX_CSTATE[2] = 0.0; |
| 555 | Arduino_skal_X.MemoryX_CSTATE[3] = 0.0; |
| 556 | } |
| 557 | |
| 558 | Arduino_skal_DW.MemoryX_IWORK = 1; |
| 559 | |
| 560 | /* End of InitializeConditions for Integrator: '<S1>/MemoryX' */ |
| 561 | |
| 562 | /* SystemInitialize for Enabled SubSystem: '<S22>/MeasurementUpdate' */ |
| 563 | /* SystemInitialize for Product: '<S53>/Product3' incorporates: |
| 564 | * Outport: '<S53>/L*(y[k]-yhat[k|k-1])' |
| 565 | */ |
| 566 | Arduino_skal_B.Product3[0] = Arduino_skal_P.Lykyhatkk1_Y0; |
| 567 | Arduino_skal_B.Product3[1] = Arduino_skal_P.Lykyhatkk1_Y0; |
| 568 | Arduino_skal_B.Product3[2] = Arduino_skal_P.Lykyhatkk1_Y0; |
| 569 | Arduino_skal_B.Product3[3] = Arduino_skal_P.Lykyhatkk1_Y0; |
| 570 | |
| 571 | /* End of SystemInitialize for SubSystem: '<S22>/MeasurementUpdate' */ |
| 572 | |
| 573 | /* set "at time zero" to false */ |
| 574 | if (rtmIsFirstInitCond((&Arduino_skal_M))) { |
| 575 | rtmSetFirstInitCond((&Arduino_skal_M), 0); |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | /* Model terminate function */ |
| 580 | void Arduino_skalModelClass::terminate() |
| 581 | { |
| 582 | /* (no terminate code required) */ |
| 583 | } |
| 584 | |
| 585 | /* Constructor */ |
| 586 | Arduino_skalModelClass::Arduino_skalModelClass() : |
| 587 | Arduino_skal_B(), |
| 588 | Arduino_skal_DW(), |
| 589 | Arduino_skal_X(), |
| 590 | Arduino_skal_M() |
| 591 | { |
| 592 | /* Currently there is no constructor body generated.*/ |
| 593 | } |
| 594 | |
| 595 | /* Destructor */ |
| 596 | Arduino_skalModelClass::~Arduino_skalModelClass() |
| 597 | { |
| 598 | /* Currently there is no destructor body generated.*/ |
| 599 | } |
| 600 | |
| 601 | /* Real-Time Model get method */ |
| 602 | RT_MODEL_Arduino_skal_T * Arduino_skalModelClass::getRTM() |
| 603 | { |
| 604 | return (&Arduino_skal_M); |
| 605 | } |
| 606 | |