| 1 | /* |
| 2 | * |
| 3 | * Copyright 1994-2020 The MathWorks, Inc. |
| 4 | * |
| 5 | * File: rt_logging.c |
| 6 | * |
| 7 | * Abstract: |
| 8 | * Real-Time Workshop data logging routines using circular buffers of |
| 9 | * fixed size. The buffers are allocated at start, filled in at each |
| 10 | * major time step and finally written to a MAT-file at the end of the |
| 11 | * simulation. |
| 12 | * |
| 13 | * This file handles redefining the following standard MathWorks types |
| 14 | * (see tmwtypes.h): |
| 15 | * [u]int8_T to be int32_T (logged as Matlab [u]int32) |
| 16 | * [u]int16_T to be int32_T (logged as Matlab [u]int32) |
| 17 | * real_T to be real32_T (logged as Matlab single) |
| 18 | * |
| 19 | */ |
| 20 | |
| 21 | #include <stdlib.h> |
| 22 | #include <string.h> |
| 23 | #include <stdio.h> |
| 24 | #include <limits.h> |
| 25 | #include <math.h> |
| 26 | |
| 27 | |
| 28 | #if !defined(MAT_FILE) || (defined(MAT_FILE) && MAT_FILE == 1) |
| 29 | |
| 30 | #include <stddef.h> /* size_t */ |
| 31 | #include "rt_logging.h" |
| 32 | #ifndef IS_RAPID_ACCEL |
| 33 | #include "rt_mxclassid.h" |
| 34 | #endif |
| 35 | #include "rtw_matlogging.h" |
| 36 | |
| 37 | #ifndef TMW_NAME_LENGTH_MAX |
| 38 | #define TMW_NAME_LENGTH_MAX 64 |
| 39 | #endif |
| 40 | #define mxMAXNAM TMW_NAME_LENGTH_MAX /* maximum name length */ |
| 41 | #define matUNKNOWN 0 |
| 42 | #define matINT8 1 |
| 43 | #define matUINT8 2 |
| 44 | #define matINT16 3 |
| 45 | #define matUINT16 4 |
| 46 | #define matINT32 5 |
| 47 | #define matUINT32 6 |
| 48 | #define matFLOAT 7 |
| 49 | #define matDOUBLE 9 |
| 50 | #define matINT64 12 |
| 51 | #define matUINT64 13 |
| 52 | #define matMATRIX 14 |
| 53 | |
| 54 | #define matLOGICAL_BIT 0x200 |
| 55 | #define matCOMPLEX_BIT 0x800 |
| 56 | |
| 57 | #define matKEY 0x4D49 |
| 58 | #define matVERSION 0x0100 |
| 59 | #define matVERSION_INFO_OFFSET 124L |
| 60 | |
| 61 | #define matINT64_ALIGN(e) ( ( ((unsigned)(e))+7 ) & (~7) ) |
| 62 | #define matTAG_SIZE (sizeof(int32_T) << 1) |
| 63 | |
| 64 | #ifndef DEFAULT_BUFFER_SIZE |
| 65 | #define DEFAULT_BUFFER_SIZE 1024 /* used if maxRows=0 and Tfinal=0.0 */ |
| 66 | #endif |
| 67 | |
| 68 | #define FREE(m) if (m != NULL) free(m) |
| 69 | |
| 70 | /* Logical definitions */ |
| 71 | #if (!defined(__cplusplus)) |
| 72 | # ifndef false |
| 73 | # define false (0U) |
| 74 | # endif |
| 75 | # ifndef true |
| 76 | # define true (1U) |
| 77 | # endif |
| 78 | #endif |
| 79 | |
| 80 | /*==========* |
| 81 | * typedefs * |
| 82 | *==========*/ |
| 83 | |
| 84 | typedef struct LogInfo_Tag { |
| 85 | LogVar *t; /* Time log variable */ |
| 86 | void *x; /* State log variable */ |
| 87 | int_T ny; /* Length of "y" log variables */ |
| 88 | void **y; /* Output log vars */ |
| 89 | void *xFinal; /* Final state log variable */ |
| 90 | |
| 91 | LogVar *logVarsList; /* Linked list of all LogVars */ |
| 92 | StructLogVar *structLogVarsList; /* Linked list of all StructLogVars */ |
| 93 | |
| 94 | boolean_T haveLogVars; /* Are logging one or more vars? */ |
| 95 | } LogInfo; |
| 96 | |
| 97 | typedef struct MatItem_tag { |
| 98 | int32_T type; |
| 99 | uint32_T nbytes; |
| 100 | const void *data; |
| 101 | } MatItem; |
| 102 | |
| 103 | typedef enum { |
| 104 | DATA_ITEM, |
| 105 | MATRIX_ITEM, |
| 106 | STRUCT_LOG_VAR_ITEM, |
| 107 | SIGNALS_STRUCT_ITEM |
| 108 | } ItemDataKind; |
| 109 | |
| 110 | /*===========* |
| 111 | * Constants * |
| 112 | *===========*/ |
| 113 | |
| 114 | static const char_T rtMemAllocError[] = "Memory allocation error"; |
| 115 | |
| 116 | #define ZEROS32 "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" |
| 117 | |
| 118 | #if mxMAXNAM==32 |
| 119 | |
| 120 | #define ZERO_PAD |
| 121 | |
| 122 | #elif mxMAXNAM==64 |
| 123 | |
| 124 | #define ZERO_PAD ZEROS32 |
| 125 | |
| 126 | #elif mxMAXNAM==128 |
| 127 | |
| 128 | #define ZERO_PAD ZEROS32 ZEROS32 ZEROS32 |
| 129 | |
| 130 | #else |
| 131 | |
| 132 | #error "Cannot Handle mxMAXNAM other than 32,64, and 128" |
| 133 | |
| 134 | #endif |
| 135 | /* field names: for variable-size signal logging */ |
| 136 | static const char_T rtStructLogVarFieldNames[] = |
| 137 | "time\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 138 | "signals\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 139 | "blockName\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD; |
| 140 | |
| 141 | static const char_T rtLocalLoggingSignalsStructFieldNames[] = |
| 142 | "values\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 143 | "valueDimensions\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 144 | "dimensions\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 145 | "label\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 146 | "title\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 147 | "plotStyle\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD; |
| 148 | |
| 149 | static const char_T rtGlobalLoggingSignalsStructFieldNames[] = |
| 150 | "values\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 151 | "valueDimensions\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 152 | "dimensions\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 153 | "label\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 154 | "blockName\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 155 | "stateName\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 156 | "inReferencedModel\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD; |
| 157 | |
| 158 | |
| 159 | #define TIME_FIELD_NAME (rtStructLogVarFieldNames[0*mxMAXNAM]) |
| 160 | #define SIGNALS_FIELD_NAME (rtStructLogVarFieldNames[1*mxMAXNAM]) |
| 161 | #define BLOCKNAME_FIELD_NAME (rtStructLogVarFieldNames[2*mxMAXNAM]) |
| 162 | |
| 163 | #define VALUES_FIELD_NAME (rtLocalLoggingSignalsStructFieldNames[0*mxMAXNAM]) |
| 164 | #define VALUEDIMENSIONS_FIELD_NAME (rtLocalLoggingSignalsStructFieldNames[1*mxMAXNAM]) |
| 165 | #define DIMENSION_FIELD_NAME (rtLocalLoggingSignalsStructFieldNames[2*mxMAXNAM]) |
| 166 | #define LABEL_FIELD_NAME (rtLocalLoggingSignalsStructFieldNames[3*mxMAXNAM]) |
| 167 | #define TITLE_FIELD_NAME (rtLocalLoggingSignalsStructFieldNames[4*mxMAXNAM]) |
| 168 | #define PLOTSTYLE_FIELD_NAME (rtLocalLoggingSignalsStructFieldNames[5*mxMAXNAM]) |
| 169 | |
| 170 | #define STATENAME_FIELD_NAME (rtGlobalLoggingSignalsStructFieldNames[5*mxMAXNAM]) |
| 171 | #define CROSS_MDL_REF_FIELD_NAME (rtGlobalLoggingSignalsStructFieldNames[6*mxMAXNAM]) |
| 172 | |
| 173 | /* field names: for fixed-size signal logging */ |
| 174 | static const char_T rtLocalLoggingSignalsStructFieldNames_noValDims[] = |
| 175 | "values\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 176 | "dimensions\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 177 | "label\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 178 | "title\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 179 | "plotStyle\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD; |
| 180 | static const char_T rtGlobalLoggingSignalsStructFieldNames_noValDims[] = |
| 181 | "values\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 182 | "dimensions\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 183 | "label\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 184 | "blockName\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 185 | "stateName\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD |
| 186 | "inReferencedModel\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" ZERO_PAD; |
| 187 | |
| 188 | extern real_T rtInf; /* declared by rt_nonfinite.c */ |
| 189 | extern real_T rtNaN; |
| 190 | extern real32_T rtNaNF; |
| 191 | |
| 192 | /*================* |
| 193 | * Local routines * |
| 194 | *================*/ |
| 195 | |
| 196 | /* Function: rt_GetSizeofDataType ============================================== |
| 197 | * Abstract: |
| 198 | * Get the element size in bytes given the data type id. |
| 199 | */ |
| 200 | static size_t rt_GetSizeofDataType(BuiltInDTypeId dTypeID) |
| 201 | { |
| 202 | size_t elSz = 0; /* unknown */ |
| 203 | |
| 204 | switch (dTypeID) { |
| 205 | case SS_DOUBLE: |
| 206 | elSz = sizeof(real_T); |
| 207 | break; |
| 208 | case SS_SINGLE: |
| 209 | elSz = sizeof(real32_T); |
| 210 | break; |
| 211 | case SS_INT8: |
| 212 | elSz = sizeof(int8_T); |
| 213 | break; |
| 214 | case SS_UINT8: |
| 215 | elSz = sizeof(uint8_T); |
| 216 | break; |
| 217 | case SS_INT16: |
| 218 | elSz = sizeof(int16_T); |
| 219 | break; |
| 220 | case SS_UINT16: |
| 221 | elSz = sizeof(uint16_T); |
| 222 | break; |
| 223 | case SS_INT32: |
| 224 | elSz = sizeof(int32_T); |
| 225 | break; |
| 226 | case SS_UINT32: |
| 227 | elSz = sizeof(uint32_T); |
| 228 | break; |
| 229 | case SS_BOOLEAN: |
| 230 | elSz = sizeof(boolean_T); |
| 231 | break; |
| 232 | } |
| 233 | return(elSz); |
| 234 | |
| 235 | } /* end rt_GetSizeofDataType */ |
| 236 | |
| 237 | |
| 238 | /* Function: rt_GetSizeofComplexType =========================================== |
| 239 | * Abstract: |
| 240 | * Get the element size in bytes given the data type id. |
| 241 | */ |
| 242 | static size_t rt_GetSizeofComplexType(BuiltInDTypeId dTypeID) |
| 243 | { |
| 244 | size_t elSz = 2*rt_GetSizeofDataType(dTypeID); |
| 245 | |
| 246 | switch (dTypeID) { |
| 247 | case SS_DOUBLE: |
| 248 | #ifdef CREAL_T |
| 249 | elSz = sizeof(creal_T); |
| 250 | #endif |
| 251 | break; |
| 252 | case SS_SINGLE: |
| 253 | #ifdef CREAL_T |
| 254 | elSz = sizeof(creal32_T); |
| 255 | #endif |
| 256 | break; |
| 257 | case SS_INT8: |
| 258 | #ifdef CINT8_T |
| 259 | elSz = sizeof(cint8_T); |
| 260 | #endif |
| 261 | break; |
| 262 | case SS_UINT8: |
| 263 | #ifdef CUINT8_T |
| 264 | elSz = sizeof(cuint8_T); |
| 265 | #endif |
| 266 | break; |
| 267 | case SS_INT16: |
| 268 | #ifdef CINT16_T |
| 269 | elSz = sizeof(cint16_T); |
| 270 | #endif |
| 271 | break; |
| 272 | case SS_UINT16: |
| 273 | #ifdef CUINT16_T |
| 274 | elSz = sizeof(cuint16_T); |
| 275 | #endif |
| 276 | break; |
| 277 | case SS_INT32: |
| 278 | #ifdef CINT32_T |
| 279 | elSz = sizeof(cint32_T); |
| 280 | #endif |
| 281 | break; |
| 282 | case SS_UINT32: |
| 283 | #ifdef CUINT32_T |
| 284 | elSz = sizeof(cuint32_T); |
| 285 | #endif |
| 286 | break; |
| 287 | case SS_BOOLEAN: |
| 288 | elSz = sizeof(boolean_T); |
| 289 | break; |
| 290 | } |
| 291 | |
| 292 | return(elSz); |
| 293 | |
| 294 | } /* end rt_GetSizeofComplexType */ |
| 295 | |
| 296 | |
| 297 | /* Function: rt_GetDataTypeConvertInfo ========================================= |
| 298 | * Abstract: |
| 299 | * Directly copy if pointer to structure is non-NULL, otherwise set to |
| 300 | * default. |
| 301 | */ |
| 302 | static RTWLogDataTypeConvert rt_GetDataTypeConvertInfo( |
| 303 | const RTWLogDataTypeConvert *pDataTypeConvertInfo, |
| 304 | BuiltInDTypeId dTypeID |
| 305 | ) |
| 306 | { |
| 307 | RTWLogDataTypeConvert dataTypeConvertInfoCopy; |
| 308 | |
| 309 | if (pDataTypeConvertInfo == NULL) { |
| 310 | dataTypeConvertInfoCopy.conversionNeeded = 0; |
| 311 | dataTypeConvertInfoCopy.dataTypeIdLoggingTo = dTypeID; |
| 312 | dataTypeConvertInfoCopy.dataTypeIdOriginal = (DTypeId)dTypeID; |
| 313 | dataTypeConvertInfoCopy.bitsPerChunk = 0; |
| 314 | dataTypeConvertInfoCopy.numOfChunk = 0; |
| 315 | dataTypeConvertInfoCopy.isSigned = 0; |
| 316 | dataTypeConvertInfoCopy.fracSlope = 1.0; |
| 317 | dataTypeConvertInfoCopy.fixedExp = 0; |
| 318 | dataTypeConvertInfoCopy.bias = 0.0; |
| 319 | } else { |
| 320 | dataTypeConvertInfoCopy = *pDataTypeConvertInfo; |
| 321 | } |
| 322 | |
| 323 | return dataTypeConvertInfoCopy; |
| 324 | |
| 325 | } /* end rt_GetDataTypeConvertInfo */ |
| 326 | |
| 327 | |
| 328 | /* Function: rt_GetDblValueFromOverSizedData =================================== |
| 329 | * Abstract: |
| 330 | */ |
| 331 | static double rt_GetDblValueFromOverSizedData( |
| 332 | const void *pVoid, |
| 333 | int bitsPerChunk, |
| 334 | int numOfChunk, |
| 335 | unsigned int isSigned, |
| 336 | double fracSlope, |
| 337 | int fixedExp, |
| 338 | double bias) |
| 339 | { |
| 340 | double retValue = 0; |
| 341 | |
| 342 | double *dblValue = (double *) calloc(numOfChunk, sizeof(double)); |
| 343 | |
| 344 | int i; |
| 345 | double isSignedNeg; |
| 346 | |
| 347 | if(isSigned) { |
| 348 | const chunk_T *pData = (const chunk_T *) (pVoid); |
| 349 | for (i = 0; i <numOfChunk; i++) { |
| 350 | dblValue[i] = (double)(pData[i]); |
| 351 | } |
| 352 | } else { |
| 353 | const uchunk_T *pData = (const uchunk_T *) (pVoid); |
| 354 | for (i = 0; i <numOfChunk; i++) { |
| 355 | dblValue[i] = (double)(pData[i]); |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | Assuming multi chunks b_n ... b_2 b_1 b_0, and the length of each chunk is N. |
| 361 | Suppose b_i is the i-th chunk's value. |
| 362 | Then for unsigned data or data with one chunk: we have |
| 363 | retValue = b_n * 2^(n*N) + ... + b_1 * 2^N + b_0 * 2^0; |
| 364 | But for signed data, we have |
| 365 | retValue = b_n * 2^(n*N) + ... + b_1 * 2^N + b_0 * 2^0+ (b_0<0) * 2^N + |
| 366 | ... (b_(n-1) <0) * 2^(n*N) |
| 367 | = (b_n + (b_(n-1)<0)) * 2^(n*N) +... + (b_1 + (b_0<0)) * 2^N + b_0 * 2^0; |
| 368 | Together: |
| 369 | retValue = |
| 370 | (b_n + isSigned * (b_(n-1)<0)) * 2^(n*N) +... + (b_1 + isSigned * (b_0<0)) * 2^N + b_0 * 2^0; |
| 371 | */ |
| 372 | |
| 373 | retValue = dblValue[numOfChunk - 1]; |
| 374 | |
| 375 | for(i = numOfChunk - 1; i > 0; i--) { |
| 376 | isSignedNeg = dblValue[i - 1] < 0 ? (double)isSigned : 0; |
| 377 | retValue = retValue + isSignedNeg; |
| 378 | |
| 379 | retValue = ldexp(retValue, bitsPerChunk)+ dblValue[i-1]; |
| 380 | } |
| 381 | retValue = ldexp( fracSlope * retValue, fixedExp ) + bias; |
| 382 | |
| 383 | FREE(dblValue); |
| 384 | return (retValue); |
| 385 | |
| 386 | } /* end rt_GetDblValueFromOverSizedData */ |
| 387 | |
| 388 | |
| 389 | /* Function: rt_GetNonBoolMxIdFromDTypeId ====================================== |
| 390 | * Abstract: |
| 391 | * Get the mx???_CLASS given the simulink builtin data type id. |
| 392 | */ |
| 393 | static mxClassID rt_GetNonBoolMxIdFromDTypeId(BuiltInDTypeId dTypeID) |
| 394 | { |
| 395 | mxClassID mxID; |
| 396 | |
| 397 | switch (dTypeID) { |
| 398 | case SS_DOUBLE: |
| 399 | mxID = (sizeof(real_T)==4? mxSINGLE_CLASS: mxDOUBLE_CLASS); |
| 400 | break; |
| 401 | case SS_SINGLE: |
| 402 | mxID = mxSINGLE_CLASS; |
| 403 | break; |
| 404 | case SS_INT8: |
| 405 | switch (sizeof(int8_T)) { |
| 406 | case 4: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 407 | "Needed for when PWS maps int8_T into 32-bits" */ |
| 408 | mxID = mxINT32_CLASS; |
| 409 | break; |
| 410 | case 2: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 411 | "Needed for when PWS maps int8_T into 16-bits" */ |
| 412 | mxID = mxINT16_CLASS; |
| 413 | break; |
| 414 | case 1: |
| 415 | mxID = mxINT8_CLASS; |
| 416 | break; |
| 417 | default: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 418 | "Needed to handle an unknown data type ID" */ |
| 419 | mxID = mxUNKNOWN_CLASS; |
| 420 | break; |
| 421 | } |
| 422 | break; |
| 423 | case SS_UINT8: |
| 424 | switch (sizeof(uint8_T)) { |
| 425 | case 4: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 426 | "Needed for when PWS maps uint8_T into 32-bits" */ |
| 427 | mxID = mxUINT32_CLASS; |
| 428 | break; |
| 429 | case 2: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 430 | "Needed for when PWS maps uint8_T into 16-bits" */ |
| 431 | mxID = mxUINT16_CLASS; |
| 432 | break; |
| 433 | case 1: |
| 434 | mxID = mxUINT8_CLASS; |
| 435 | break; |
| 436 | default: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 437 | "Needed to handle an unknown data type ID" */ |
| 438 | mxID = mxUNKNOWN_CLASS; |
| 439 | break; |
| 440 | } |
| 441 | break; |
| 442 | case SS_INT16: |
| 443 | mxID = (sizeof(int16_T)==4? mxINT32_CLASS: mxINT16_CLASS); |
| 444 | break; |
| 445 | case SS_UINT16: |
| 446 | mxID = (sizeof(uint16_T)==4? mxUINT32_CLASS: mxUINT16_CLASS); |
| 447 | break; |
| 448 | case SS_INT32: |
| 449 | mxID = mxINT32_CLASS; |
| 450 | break; |
| 451 | case SS_UINT32: |
| 452 | mxID = mxUINT32_CLASS; |
| 453 | break; |
| 454 | /*case SS_BOOLEAN: |
| 455 | mxID = (sizeof(boolean_T)==4? mxUINT32_CLASS: mxLOGICAL_CLASS); |
| 456 | break;*/ |
| 457 | default: |
| 458 | mxID = mxUNKNOWN_CLASS; |
| 459 | break; |
| 460 | } |
| 461 | |
| 462 | return(mxID); |
| 463 | |
| 464 | } /* end rt_GetNonBoolMxIdFromDTypeId */ |
| 465 | |
| 466 | |
| 467 | |
| 468 | #ifdef __cplusplus |
| 469 | extern "C" { |
| 470 | #endif |
| 471 | |
| 472 | |
| 473 | /* Function: rt_GetMxIdFromDTypeIdForRSim ====================================== |
| 474 | * Abstract: |
| 475 | * Get the mx???_CLASS given the simulink builtin data type id. |
| 476 | */ |
| 477 | mxClassID rt_GetMxIdFromDTypeIdForRSim(BuiltInDTypeId dTypeID) |
| 478 | { |
| 479 | mxClassID mxID; |
| 480 | |
| 481 | if (dTypeID == SS_BOOLEAN) { |
| 482 | switch (sizeof(boolean_T)) { |
| 483 | case 4: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 484 | "Needed for when PWS maps boolean_T into 32-bits" */ |
| 485 | mxID = mxUINT32_CLASS; |
| 486 | break; |
| 487 | case 2: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 488 | "Needed for when PWS maps boolean_T into 16-bits" */ |
| 489 | mxID = mxUINT16_CLASS; |
| 490 | break; |
| 491 | default: |
| 492 | mxID = mxLOGICAL_CLASS; |
| 493 | break; |
| 494 | } |
| 495 | } else { |
| 496 | mxID = rt_GetNonBoolMxIdFromDTypeId(dTypeID); |
| 497 | } |
| 498 | |
| 499 | return(mxID); |
| 500 | |
| 501 | } /* end rt_GetMxIdFromDTypeIdForRSim */ |
| 502 | |
| 503 | |
| 504 | #ifdef __cplusplus |
| 505 | } |
| 506 | #endif |
| 507 | |
| 508 | |
| 509 | |
| 510 | |
| 511 | #ifdef __cplusplus |
| 512 | extern "C" { |
| 513 | #endif |
| 514 | |
| 515 | |
| 516 | /* Function: rt_GetMxIdFromDTypeId ============================================= |
| 517 | * Abstract: |
| 518 | * Get the mx???_CLASS given the simulink builtin data type id. |
| 519 | */ |
| 520 | mxClassID rt_GetMxIdFromDTypeId(BuiltInDTypeId dTypeID) |
| 521 | { |
| 522 | mxClassID mxID; |
| 523 | |
| 524 | if (dTypeID == SS_BOOLEAN) { |
| 525 | switch (sizeof(boolean_T)) { |
| 526 | case 4: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 527 | "Needed for when PWS maps boolean_T into 32-bits" */ |
| 528 | mxID = mxUINT32_CLASS; |
| 529 | break; |
| 530 | case 2: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 531 | "Needed for when PWS maps boolean_T into 16-bits" */ |
| 532 | mxID = mxUINT16_CLASS; |
| 533 | break; |
| 534 | default: |
| 535 | mxID = mxUINT8_CLASS; |
| 536 | break; |
| 537 | } |
| 538 | } else { |
| 539 | mxID = rt_GetNonBoolMxIdFromDTypeId(dTypeID); |
| 540 | } |
| 541 | return(mxID); |
| 542 | |
| 543 | } /* end rt_GetMxIdFromDTypeId */ |
| 544 | |
| 545 | |
| 546 | #ifdef __cplusplus |
| 547 | } |
| 548 | #endif |
| 549 | |
| 550 | |
| 551 | |
| 552 | /* Function: rt_GetMatIdFromMxId =============================================== |
| 553 | * Abstract: |
| 554 | * Get the MatId given the mxClassID. |
| 555 | */ |
| 556 | static int_T rt_GetMatIdFromMxId(mxClassID mxID) |
| 557 | { |
| 558 | int_T matID; |
| 559 | |
| 560 | switch (mxID) { |
| 561 | case mxCELL_CLASS: |
| 562 | case mxSTRUCT_CLASS: |
| 563 | case mxOBJECT_CLASS: |
| 564 | matID = -1; |
| 565 | break; |
| 566 | case mxCHAR_CLASS: |
| 567 | matID = matUINT16; |
| 568 | break; |
| 569 | case mxDOUBLE_CLASS: |
| 570 | matID = matDOUBLE; |
| 571 | break; |
| 572 | case mxSINGLE_CLASS: |
| 573 | matID = matFLOAT; |
| 574 | break; |
| 575 | case mxINT8_CLASS: |
| 576 | matID = matINT8; |
| 577 | break; |
| 578 | case mxUINT8_CLASS: |
| 579 | matID = matUINT8; |
| 580 | break; |
| 581 | case mxINT16_CLASS: |
| 582 | matID = matINT16; |
| 583 | break; |
| 584 | case mxUINT16_CLASS: |
| 585 | matID = matUINT16; |
| 586 | break; |
| 587 | case mxINT32_CLASS: |
| 588 | matID = matINT32; |
| 589 | break; |
| 590 | case mxUINT32_CLASS: |
| 591 | matID = matUINT32; |
| 592 | break; |
| 593 | case mxINT64_CLASS: |
| 594 | matID = matINT64; |
| 595 | break; |
| 596 | case mxUINT64_CLASS: |
| 597 | matID = matUINT64; |
| 598 | break; |
| 599 | default: |
| 600 | matID = matUNKNOWN; |
| 601 | break; |
| 602 | } |
| 603 | return(matID); |
| 604 | |
| 605 | } /* end rt_GetMatIdFromMxId */ |
| 606 | |
| 607 | |
| 608 | /* Forward declaration */ |
| 609 | static int_T rt_WriteItemToMatFile(FILE *fp, |
| 610 | MatItem *pItem, |
| 611 | ItemDataKind dataKind); |
| 612 | |
| 613 | |
| 614 | /* Function: rt_ProcessMatItem ================================================= |
| 615 | * Abstract: |
| 616 | * This routine along with rt_WriteItemToMatFile() write out a specified |
| 617 | * mat-item the .mat file. Note that if the input argument |
| 618 | * cmd == 0, then this function just calculates the size of the item. |
| 619 | * cmd <> 0, this function writes the mat-item to the file. |
| 620 | * Return values is |
| 621 | * -1 : coding/logic error |
| 622 | * 0 : upon success |
| 623 | * > 0 : upon write failure (1) |
| 624 | */ |
| 625 | static int_T rt_ProcessMatItem(FILE *fp, |
| 626 | MatItem *pItem, |
| 627 | ItemDataKind itemKind, |
| 628 | int_T cmd) |
| 629 | { |
| 630 | mxClassID mxID = mxUNKNOWN_CLASS; |
| 631 | uint32_T arrayFlags[2] = {0, 0}; |
| 632 | int32_T *dims = NULL; |
| 633 | int32_T _dims[3] = {0, 0, 0}; |
| 634 | int32_T nDims = 2; |
| 635 | int32_T nBytesInItem = 0; |
| 636 | const char_T *itemName; |
| 637 | MatItem item; |
| 638 | int_T retStat = 0; |
| 639 | |
| 640 | switch (itemKind) { |
| 641 | case DATA_ITEM: { |
| 642 | (void)fprintf(stderr,"Unexpected itemKind = DATA_ITEM in " |
| 643 | "rt_ProcessMatItem @A\n"); |
| 644 | retStat = -1; |
| 645 | goto EXIT_POINT; |
| 646 | } |
| 647 | case MATRIX_ITEM: { |
| 648 | const MatrixData *var = (const MatrixData *) pItem->data; |
| 649 | |
| 650 | mxID = var->mxID; |
| 651 | arrayFlags[0] = mxID; |
| 652 | arrayFlags[0] |= var->logical; |
| 653 | arrayFlags[0] |= var->complex; |
| 654 | if (var->nDims < 2) { |
| 655 | dims = _dims; |
| 656 | dims[0] = var->nRows; |
| 657 | dims[1] = var->nCols; |
| 658 | nDims = 2; |
| 659 | } else { |
| 660 | int32_T k; |
| 661 | dims = (int32_T*)malloc(sizeof(int32_T)*(var->nDims+1)); |
| 662 | for (k = 0; k < var->nDims; k++) { |
| 663 | dims[k] = var->dims[k]; |
| 664 | } |
| 665 | dims[var->nDims] = var->nRows; |
| 666 | nDims = var->nDims + 1; |
| 667 | } |
| 668 | itemName = var->name; |
| 669 | break; |
| 670 | } |
| 671 | case STRUCT_LOG_VAR_ITEM: { |
| 672 | const StructLogVar *var = (const StructLogVar *) pItem->data; |
| 673 | |
| 674 | mxID = mxSTRUCT_CLASS; |
| 675 | arrayFlags[0] = mxID; |
| 676 | dims = _dims; |
| 677 | dims[0] = 1; |
| 678 | dims[1] = 1; |
| 679 | itemName = var->name; |
| 680 | break; |
| 681 | } |
| 682 | case SIGNALS_STRUCT_ITEM: { |
| 683 | const SignalsStruct *var = (const SignalsStruct *) pItem->data; |
| 684 | |
| 685 | mxID = mxSTRUCT_CLASS; |
| 686 | arrayFlags[0] = mxID; |
| 687 | dims = _dims; |
| 688 | dims[0] = 1; |
| 689 | dims[1] = var->numSignals; |
| 690 | itemName = &SIGNALS_FIELD_NAME; |
| 691 | break; |
| 692 | } |
| 693 | default: |
| 694 | (void)fprintf(stderr,"Unexpected itemKind=%d in rt_ProcessMatItem @B\n", |
| 695 | itemKind); |
| 696 | retStat = -1; |
| 697 | goto EXIT_POINT; |
| 698 | } |
| 699 | |
| 700 | /* array flags */ |
| 701 | item.nbytes = 2*sizeof(uint32_T); |
| 702 | if (cmd) { |
| 703 | item.type = matUINT32; |
| 704 | item.data = arrayFlags; |
| 705 | if (rt_WriteItemToMatFile(fp,&item, DATA_ITEM)) { |
| 706 | retStat = 1; |
| 707 | goto EXIT_POINT; |
| 708 | } |
| 709 | } else { |
| 710 | /*LINTED E_CAST_INT_TO_SMALL_INT*/ |
| 711 | nBytesInItem += matINT64_ALIGN(matTAG_SIZE + item.nbytes); |
| 712 | } |
| 713 | /* dimensions */ |
| 714 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 715 | item.nbytes = nDims*sizeof(int32_T); |
| 716 | if (cmd) { |
| 717 | item.type = matINT32; |
| 718 | item.data = dims; |
| 719 | if (rt_WriteItemToMatFile(fp,&item, DATA_ITEM)) { |
| 720 | retStat = 1; |
| 721 | goto EXIT_POINT; |
| 722 | } |
| 723 | } else { |
| 724 | /*LINTED E_CAST_INT_TO_SMALL_INT*/ |
| 725 | nBytesInItem += matINT64_ALIGN(matTAG_SIZE + item.nbytes); |
| 726 | } |
| 727 | /* name */ |
| 728 | item.nbytes = (int32_T)strlen(itemName); |
| 729 | if (cmd) { |
| 730 | item.type = matINT8; |
| 731 | item.data = (const char_T*) itemName; |
| 732 | if (rt_WriteItemToMatFile(fp,&item, DATA_ITEM)) { |
| 733 | retStat = 1; |
| 734 | goto EXIT_POINT; |
| 735 | } |
| 736 | } else { |
| 737 | nBytesInItem += (item.nbytes <= 4) ? /*LINTED E_CAST_INT_TO_SMALL_INT*/ |
| 738 | matTAG_SIZE : matINT64_ALIGN(matTAG_SIZE + item.nbytes); |
| 739 | } |
| 740 | |
| 741 | if (itemKind == MATRIX_ITEM) { |
| 742 | const MatrixData *var = (const MatrixData*) pItem->data; |
| 743 | int_T matID = rt_GetMatIdFromMxId(mxID); |
| 744 | size_t elSize = var->elSize; |
| 745 | |
| 746 | /* data */ |
| 747 | item.nbytes = (int32_T)(var->nRows * var->nCols * elSize); |
| 748 | if (cmd) { |
| 749 | item.type = matID; |
| 750 | item.data = var->re; |
| 751 | if (rt_WriteItemToMatFile(fp, &item, DATA_ITEM)) { |
| 752 | retStat = 1; |
| 753 | goto EXIT_POINT; |
| 754 | } |
| 755 | } else { |
| 756 | nBytesInItem += (item.nbytes <= 4) ? /*LINTED*/ |
| 757 | matTAG_SIZE : matINT64_ALIGN(matTAG_SIZE + item.nbytes); |
| 758 | } |
| 759 | /* imaginary part */ |
| 760 | if (var->complex) { |
| 761 | item.nbytes = (int32_T)(var->nRows * var->nCols * elSize); |
| 762 | if (cmd) { |
| 763 | item.type = matID; |
| 764 | item.data = var->im; |
| 765 | if (rt_WriteItemToMatFile(fp, &item, DATA_ITEM)) { |
| 766 | retStat = 1; |
| 767 | goto EXIT_POINT; |
| 768 | } |
| 769 | } else { |
| 770 | nBytesInItem += (item.nbytes <= 4) ? /*LINTED*/ |
| 771 | matTAG_SIZE : matINT64_ALIGN(matTAG_SIZE + item.nbytes); |
| 772 | } |
| 773 | } |
| 774 | } else { /* some type of structure item */ |
| 775 | const char_T *fieldNames; |
| 776 | int_T sizeofFieldNames; |
| 777 | |
| 778 | /* field names */ |
| 779 | switch (itemKind) { |
| 780 | case STRUCT_LOG_VAR_ITEM: { |
| 781 | const StructLogVar *var = (const StructLogVar *) pItem->data; |
| 782 | fieldNames = rtStructLogVarFieldNames; |
| 783 | sizeofFieldNames = var->numActiveFields * mxMAXNAM; |
| 784 | break; |
| 785 | } |
| 786 | case SIGNALS_STRUCT_ITEM: { |
| 787 | const SignalsStruct *var = (const SignalsStruct *) pItem->data; |
| 788 | fieldNames = var->fieldNames; |
| 789 | sizeofFieldNames = var->numActiveFields * mxMAXNAM; |
| 790 | break; |
| 791 | } |
| 792 | default: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 793 | "Needed to handle an unknown itemKind" */ |
| 794 | (void)fprintf(stderr, "Unexpected itemKind=%d in " |
| 795 | "rt_ProcessMatItem @C\n", itemKind); |
| 796 | retStat = -1; |
| 797 | goto EXIT_POINT; |
| 798 | } |
| 799 | |
| 800 | /* write field names */ |
| 801 | if (cmd) { |
| 802 | int32_T tmpInt = mxMAXNAM; |
| 803 | |
| 804 | item.nbytes = sizeof(int32_T); |
| 805 | item.type = matINT32; |
| 806 | item.data = &tmpInt; |
| 807 | if (rt_WriteItemToMatFile(fp,&item, DATA_ITEM)) { |
| 808 | retStat = 1; |
| 809 | goto EXIT_POINT; |
| 810 | } |
| 811 | |
| 812 | item.nbytes = sizeofFieldNames; |
| 813 | item.type = matINT8; |
| 814 | item.data = (const char_T*) fieldNames; |
| 815 | if (rt_WriteItemToMatFile(fp,&item, DATA_ITEM)) { |
| 816 | retStat = 1; |
| 817 | goto EXIT_POINT; |
| 818 | } |
| 819 | } else { |
| 820 | /*LINTED E_CAST_INT_TO_SMALL_INT*/ |
| 821 | nBytesInItem += matINT64_ALIGN( matTAG_SIZE + matTAG_SIZE + |
| 822 | sizeofFieldNames ); |
| 823 | } |
| 824 | |
| 825 | /* process each field of the structure */ |
| 826 | switch (itemKind) { |
| 827 | case STRUCT_LOG_VAR_ITEM: { |
| 828 | const StructLogVar *var = pItem->data; |
| 829 | |
| 830 | /* time */ |
| 831 | { |
| 832 | const void *data = var->time; |
| 833 | |
| 834 | if (var->logTime) { /* time is a LogVar, get the MatrixData */ |
| 835 | data = &(((const LogVar*) (var->time))->data); |
| 836 | } |
| 837 | |
| 838 | item.type = matMATRIX; |
| 839 | item.data = data; |
| 840 | if (cmd) { |
| 841 | if (rt_WriteItemToMatFile(fp,&item,MATRIX_ITEM)){ |
| 842 | retStat = 1; |
| 843 | goto EXIT_POINT; |
| 844 | } |
| 845 | } else { |
| 846 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM,0)){ |
| 847 | retStat = 1; |
| 848 | goto EXIT_POINT; |
| 849 | } |
| 850 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | /* signals */ |
| 855 | item.type = matMATRIX; |
| 856 | item.data = &(var->signals); |
| 857 | if (cmd) { |
| 858 | if (rt_WriteItemToMatFile(fp,&item,SIGNALS_STRUCT_ITEM)) { |
| 859 | retStat = 1; |
| 860 | goto EXIT_POINT; |
| 861 | } |
| 862 | } else { |
| 863 | if (rt_ProcessMatItem(fp, &item, SIGNALS_STRUCT_ITEM,0)) { |
| 864 | retStat = 1; |
| 865 | goto EXIT_POINT; |
| 866 | } |
| 867 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 868 | } |
| 869 | |
| 870 | /* block name */ |
| 871 | if (var->blockName != NULL) { |
| 872 | item.type = matMATRIX; |
| 873 | item.data = var->blockName; |
| 874 | if (cmd) { |
| 875 | if (rt_WriteItemToMatFile(fp, &item, MATRIX_ITEM)) { |
| 876 | retStat = 1; |
| 877 | goto EXIT_POINT; |
| 878 | } |
| 879 | } else { |
| 880 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM, 0)) { |
| 881 | retStat = 1; |
| 882 | goto EXIT_POINT; |
| 883 | } |
| 884 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 885 | } |
| 886 | } |
| 887 | break; |
| 888 | } |
| 889 | case SIGNALS_STRUCT_ITEM: { |
| 890 | const SignalsStruct *var = pItem->data; |
| 891 | const LogVar *values = var->values; |
| 892 | const MatrixData *dimensions = var->dimensions; |
| 893 | const MatrixData *labels = var->labels; |
| 894 | const MatrixData *plotStyles = var->plotStyles; |
| 895 | const MatrixData *titles = var->titles; |
| 896 | const MatrixData *blockNames = var->blockNames; |
| 897 | const MatrixData *stateNames = var->stateNames; |
| 898 | const MatrixData *crossMdlRef = var->crossMdlRef; |
| 899 | const boolean_T logValueDimensions = var->logValueDimensions; |
| 900 | int_T i; |
| 901 | |
| 902 | for (i = 0; i < var->numSignals; i++) { |
| 903 | /* values */ |
| 904 | item.type = matMATRIX; |
| 905 | item.data = &(values->data); |
| 906 | if (cmd) { |
| 907 | if (rt_WriteItemToMatFile(fp, &item,MATRIX_ITEM)) { |
| 908 | retStat = 1; |
| 909 | goto EXIT_POINT; |
| 910 | } |
| 911 | } else { |
| 912 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM, 0)) { |
| 913 | retStat = 1; |
| 914 | goto EXIT_POINT; |
| 915 | } |
| 916 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 917 | } |
| 918 | |
| 919 | if(logValueDimensions) |
| 920 | { |
| 921 | /* valueDimensions */ |
| 922 | /* Since the functions rt_WriteItemToMatFile and |
| 923 | rt_ProcessMatItem deal with MatrixData, |
| 924 | convert valDims to tempData, and fill up the |
| 925 | necessary fields. |
| 926 | */ |
| 927 | MatrixData tempData; |
| 928 | (void)memcpy(tempData.name, &VALUEDIMENSIONS_FIELD_NAME, mxMAXNAM); |
| 929 | tempData.nRows = values->valDims->nRows; |
| 930 | tempData.nCols = values->valDims->nCols; |
| 931 | tempData.nDims = 1; |
| 932 | tempData._dims[0] = values->valDims->nCols; |
| 933 | tempData.re = values->valDims->dimsData; |
| 934 | tempData.im = NULL; |
| 935 | tempData.dTypeID = SS_DOUBLE; |
| 936 | tempData.elSize = sizeof(real_T); |
| 937 | tempData.mxID = mxDOUBLE_CLASS; |
| 938 | tempData.logical = 0; |
| 939 | tempData.complex = 0; |
| 940 | tempData.frameData = 0; |
| 941 | tempData.frameSize = 1; |
| 942 | |
| 943 | item.type = matMATRIX; |
| 944 | item.data = &tempData; /*values->valDims;*/ |
| 945 | |
| 946 | if (cmd) { |
| 947 | if (rt_WriteItemToMatFile(fp, &item,MATRIX_ITEM)) { |
| 948 | retStat = 1; |
| 949 | goto EXIT_POINT; |
| 950 | } |
| 951 | } else { |
| 952 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM, 0)) { |
| 953 | retStat = 1; |
| 954 | goto EXIT_POINT; |
| 955 | } |
| 956 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 957 | } |
| 958 | } |
| 959 | values = values->next; |
| 960 | |
| 961 | /* dimensions */ |
| 962 | if (dimensions != NULL) { |
| 963 | item.type = matMATRIX; |
| 964 | item.data = &(dimensions[i]); |
| 965 | if (cmd) { |
| 966 | if (rt_WriteItemToMatFile(fp,&item, MATRIX_ITEM)) { |
| 967 | retStat = 1; |
| 968 | goto EXIT_POINT; |
| 969 | } |
| 970 | } else { |
| 971 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM, 0)) { |
| 972 | retStat = 1; |
| 973 | goto EXIT_POINT; |
| 974 | } |
| 975 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | /* label */ |
| 980 | item.type = matMATRIX; |
| 981 | item.data = &(labels[i]); |
| 982 | if (cmd) { |
| 983 | if (rt_WriteItemToMatFile(fp, &item,MATRIX_ITEM)) { |
| 984 | retStat = 1; |
| 985 | goto EXIT_POINT; |
| 986 | } |
| 987 | } else { |
| 988 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM, 0)) { |
| 989 | retStat = 1; |
| 990 | goto EXIT_POINT; |
| 991 | } |
| 992 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 993 | } |
| 994 | /* title */ |
| 995 | if (titles != NULL) { |
| 996 | item.type = matMATRIX; |
| 997 | item.data = &(titles[i]); |
| 998 | if (cmd) { |
| 999 | if (rt_WriteItemToMatFile(fp, &item, MATRIX_ITEM)) { |
| 1000 | retStat = 1; |
| 1001 | goto EXIT_POINT; |
| 1002 | } |
| 1003 | } else { |
| 1004 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM, 0)) { |
| 1005 | retStat = 1; |
| 1006 | goto EXIT_POINT; |
| 1007 | } |
| 1008 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 1009 | } |
| 1010 | } |
| 1011 | /* plot style */ |
| 1012 | if (plotStyles != NULL) { |
| 1013 | item.type = matMATRIX; |
| 1014 | item.data = &(plotStyles[i]); |
| 1015 | if (cmd) { |
| 1016 | if (rt_WriteItemToMatFile(fp,&item, MATRIX_ITEM)) { |
| 1017 | retStat = 1; |
| 1018 | goto EXIT_POINT; |
| 1019 | } |
| 1020 | } else { |
| 1021 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM, 0)) { |
| 1022 | retStat = 1; |
| 1023 | goto EXIT_POINT; |
| 1024 | } |
| 1025 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 1026 | } |
| 1027 | } |
| 1028 | /* block name */ |
| 1029 | if (blockNames != NULL) { |
| 1030 | item.type = matMATRIX; |
| 1031 | item.data = &(blockNames[i]); |
| 1032 | if (cmd) { |
| 1033 | if (rt_WriteItemToMatFile(fp, &item, MATRIX_ITEM)) { |
| 1034 | retStat = 1; |
| 1035 | goto EXIT_POINT; |
| 1036 | } |
| 1037 | } else { |
| 1038 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM, 0)) { |
| 1039 | retStat = 1; |
| 1040 | goto EXIT_POINT; |
| 1041 | } |
| 1042 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 1043 | } |
| 1044 | } |
| 1045 | /* state name */ |
| 1046 | if (stateNames != NULL) { |
| 1047 | item.type = matMATRIX; |
| 1048 | item.data = &(stateNames[i]); |
| 1049 | if (cmd) { |
| 1050 | if (rt_WriteItemToMatFile(fp, &item, MATRIX_ITEM)) { |
| 1051 | retStat = 1; |
| 1052 | goto EXIT_POINT; |
| 1053 | } |
| 1054 | } else { |
| 1055 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM, 0)) { |
| 1056 | retStat = 1; |
| 1057 | goto EXIT_POINT; |
| 1058 | } |
| 1059 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 1060 | } |
| 1061 | } |
| 1062 | /* crossMdlRef */ |
| 1063 | if (crossMdlRef != NULL) { |
| 1064 | item.type = matMATRIX; |
| 1065 | item.data = &(crossMdlRef[i]); |
| 1066 | if (cmd) { |
| 1067 | if (rt_WriteItemToMatFile(fp, &item, MATRIX_ITEM)) { |
| 1068 | retStat = 1; |
| 1069 | goto EXIT_POINT; |
| 1070 | } |
| 1071 | } else { |
| 1072 | if (rt_ProcessMatItem(fp, &item, MATRIX_ITEM, 0)) { |
| 1073 | retStat = 1; |
| 1074 | goto EXIT_POINT; |
| 1075 | } |
| 1076 | nBytesInItem += item.nbytes + matTAG_SIZE; |
| 1077 | } |
| 1078 | } |
| 1079 | } /* for i=1:numSignals */ |
| 1080 | break; |
| 1081 | } |
| 1082 | default: /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 1083 | "Needed to handle an unknown itemKind" */ |
| 1084 | (void)fprintf(stderr, "Unexpected itemKind=%d in " |
| 1085 | "rt_ProcessMatItem @D\n", itemKind); |
| 1086 | retStat = -1; |
| 1087 | goto EXIT_POINT; |
| 1088 | } |
| 1089 | } /* end struct item */ |
| 1090 | |
| 1091 | if (!cmd) { |
| 1092 | pItem->nbytes = nBytesInItem; |
| 1093 | } |
| 1094 | |
| 1095 | EXIT_POINT: |
| 1096 | if (dims != _dims) { |
| 1097 | FREE(dims); |
| 1098 | } |
| 1099 | return(retStat); |
| 1100 | |
| 1101 | } /* end rt_ProcessMatItem */ |
| 1102 | |
| 1103 | |
| 1104 | /* Function: rt_WriteItemToMatFile ============================================= |
| 1105 | * Abstract: |
| 1106 | * Entry function for writing out a mat item to the mat file. |
| 1107 | * |
| 1108 | * Return values is |
| 1109 | * == 0 : upon success |
| 1110 | * <> 0 : upon failure |
| 1111 | */ |
| 1112 | static int_T rt_WriteItemToMatFile(FILE *fp, |
| 1113 | MatItem *pItem, |
| 1114 | ItemDataKind itemKind) |
| 1115 | { |
| 1116 | /* Determine the item size */ |
| 1117 | if (pItem->type == matMATRIX) { |
| 1118 | if (rt_ProcessMatItem(fp, pItem, itemKind, 0)) return(1); |
| 1119 | } |
| 1120 | |
| 1121 | /* Write the item tag and data */ |
| 1122 | if (pItem->nbytes > 4) { |
| 1123 | int32_T nAlignBytes; |
| 1124 | |
| 1125 | if (fwrite(pItem, 1, matTAG_SIZE, fp) != matTAG_SIZE) return(1); |
| 1126 | |
| 1127 | if (pItem->type == matMATRIX) { |
| 1128 | if (rt_ProcessMatItem(fp, pItem, itemKind, 1)) return(1); |
| 1129 | } else { |
| 1130 | if ( fwrite(pItem->data, 1, pItem->nbytes, fp) != |
| 1131 | ((size_t) pItem->nbytes) ) { |
| 1132 | return(1); |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | /* Add offset for 8-byte alignment */ |
| 1137 | nAlignBytes = matINT64_ALIGN(pItem->nbytes) - pItem->nbytes; |
| 1138 | if (nAlignBytes > 0) { |
| 1139 | int pad[2] = {0, 0}; |
| 1140 | if ( fwrite(pad,1,nAlignBytes,fp) != ((size_t) nAlignBytes) ) { |
| 1141 | return(1); |
| 1142 | } |
| 1143 | } |
| 1144 | } else { |
| 1145 | MatItem item = {0, 0, NULL}; |
| 1146 | item.type = ((uint32_T)(pItem->type))|(((uint32_T)(pItem->nbytes))<<16); |
| 1147 | (void)memcpy(&item.nbytes, pItem->data, pItem->nbytes); |
| 1148 | if (fwrite(&item, 1, matTAG_SIZE, fp) != matTAG_SIZE) return(1); |
| 1149 | } |
| 1150 | |
| 1151 | return(0); |
| 1152 | |
| 1153 | } /* end rt_WriteItemToMatFile */ |
| 1154 | |
| 1155 | |
| 1156 | /* Function: rt_WriteMat5FileHeader ============================================ |
| 1157 | * Abstract: |
| 1158 | * Function to write the mat file header. |
| 1159 | * Return values is |
| 1160 | * == 0 : upon success |
| 1161 | * <> 0 : upon failure |
| 1162 | */ |
| 1163 | static int_T rt_WriteMat5FileHeader(FILE *fp) |
| 1164 | { |
| 1165 | int_T nbytes; |
| 1166 | int_T nspaces; |
| 1167 | int_T i, n; |
| 1168 | unsigned short ver[2]; |
| 1169 | char_T spaces[16]; |
| 1170 | const char_T *matversion = "MATLAB 5.0 MAT-file"; |
| 1171 | |
| 1172 | (void)memset(spaces, ' ', sizeof(spaces)); |
| 1173 | |
| 1174 | n = (int_T)strlen(matversion); |
| 1175 | nbytes = (int_T)fwrite(matversion, 1, n, fp); |
| 1176 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 1177 | nspaces = matVERSION_INFO_OFFSET - nbytes; |
| 1178 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 1179 | n = nspaces % sizeof(spaces); |
| 1180 | nbytes += (int_T)fwrite(spaces, 1, n, fp); |
| 1181 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 1182 | n = nspaces / sizeof(spaces); |
| 1183 | for (i = 0; i < n; ++i) { |
| 1184 | nbytes += (int_T)fwrite(spaces, 1, sizeof(spaces), fp); |
| 1185 | } |
| 1186 | if (nbytes == matVERSION_INFO_OFFSET) { |
| 1187 | ver[0] = matVERSION; |
| 1188 | ver[1] = matKEY; |
| 1189 | nbytes += (int_T)fwrite(ver, 1, sizeof(ver), fp); |
| 1190 | } |
| 1191 | return(nbytes != matVERSION_INFO_OFFSET + sizeof(ver)); |
| 1192 | |
| 1193 | } /* end rt_WriteMat5FileHeader */ |
| 1194 | |
| 1195 | |
| 1196 | /* Function: rt_FixupLogVar ==================================================== |
| 1197 | * Abstract: |
| 1198 | * Make the logged variable suitable for MATLAB. |
| 1199 | */ |
| 1200 | static const char_T *rt_FixupLogVar(LogVar *var,int verbose) |
| 1201 | { |
| 1202 | int_T nCols = var->data.nCols; |
| 1203 | int_T maxRows = var->data.nRows; |
| 1204 | int_T nDims = var->data.nDims; |
| 1205 | size_t elSize = var->data.elSize; |
| 1206 | int_T nRows = (var->wrapped ? maxRows : var->rowIdx); |
| 1207 | |
| 1208 | var->nDataPoints = var->rowIdx + var->wrapped * maxRows; |
| 1209 | |
| 1210 | if (var->wrapped > 1 || (var->wrapped == 1 && var->rowIdx != 0)) { |
| 1211 | /* |
| 1212 | * Warn the user the circular buffer has wrapped, implying that |
| 1213 | * some data has been lost. |
| 1214 | */ |
| 1215 | if( verbose) { |
| 1216 | (void)fprintf(stdout, |
| 1217 | "*** Log variable %s has wrapped %d times\n" |
| 1218 | " using a circular buffer of size %d\n", |
| 1219 | var->data.name, var->wrapped, var->data.nRows); |
| 1220 | } |
| 1221 | if (var->usingDefaultBufSize) { |
| 1222 | /* |
| 1223 | * If wrapping occurred using the default buffer size, |
| 1224 | * let the user know what size buffer to use in the |
| 1225 | * future to avoid wrapping. If the default buffer |
| 1226 | * size was not used, the user has no control to specify |
| 1227 | * the correct value. Wrapping may occur when not using |
| 1228 | * the default buffer if we allocated too small a buffer |
| 1229 | * size for this logvar. One common case is a toWorkspace |
| 1230 | * block inside of an iterative subsystem - we can not take |
| 1231 | * the number of iterations into account (they may be |
| 1232 | * variable) when allocating the buffer. In this case, |
| 1233 | * just warn the buffer wrapped and don't tell user they |
| 1234 | * can override the buffer size. |
| 1235 | */ |
| 1236 | if( verbose ) { |
| 1237 | (void)fprintf(stdout, |
| 1238 | "*** To avoid wrapping, explicitly specify a\n" |
| 1239 | " buffer size of %d in your Simulink model\n" |
| 1240 | " by adding OPTS=\"-DDEFAULT_BUFFER_SIZE=%d\"\n" |
| 1241 | " as an argument to the ConfigSet MakeCommand\n" |
| 1242 | " parameter\n", |
| 1243 | var->nDataPoints, var->nDataPoints); |
| 1244 | } |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | if (nDims < 2 && nCols > 1) { /* Transpose? */ |
| 1249 | /* Don't need to transpose valueDimensions */ |
| 1250 | int_T nEl = nRows*nCols; |
| 1251 | char *src = var->data.re; |
| 1252 | char *pmT; |
| 1253 | int_T k; |
| 1254 | |
| 1255 | /********************************** |
| 1256 | * If memory cannot be allocated, * |
| 1257 | * write to a temporary buffer * |
| 1258 | **********************************/ |
| 1259 | if ((pmT = malloc(nEl*elSize)) == NULL) { |
| 1260 | FILE *fptr; |
| 1261 | char fName[mxMAXNAM+13]; |
| 1262 | |
| 1263 | (void)sprintf(fName, "%s%s", var->data.name, "_rtw_tmw.tmw"); |
| 1264 | if ((fptr=fopen(fName,"w+b")) == NULL) { |
| 1265 | (void)fprintf(stderr,"*** Error opening %s",fName); |
| 1266 | return("unable to open data file\n"); |
| 1267 | } |
| 1268 | |
| 1269 | /**************************** |
| 1270 | * Write the data to a file * |
| 1271 | ****************************/ |
| 1272 | for (k=0; k<nEl; k++) { |
| 1273 | int_T kT = nCols*(k%nRows) + (k/nRows); |
| 1274 | char *dst = src + kT*elSize; |
| 1275 | (void)fwrite(dst, elSize, 1, fptr); |
| 1276 | } |
| 1277 | if (var->data.complex) { |
| 1278 | char *pmiT = var->data.re; |
| 1279 | src = var->data.im; |
| 1280 | for (k=0; k<nEl; k++) { |
| 1281 | int_T kT = nRows*(k%nCols) + (k/nCols); |
| 1282 | char *dst = pmiT + kT*elSize; |
| 1283 | (void)memcpy(dst, src, elSize); |
| 1284 | src += elSize; |
| 1285 | } |
| 1286 | var->data.re = var->data.im; |
| 1287 | var->data.im = pmiT; |
| 1288 | } |
| 1289 | |
| 1290 | /******************************* |
| 1291 | * Read the data from the file * |
| 1292 | *******************************/ |
| 1293 | (void)rewind(fptr); |
| 1294 | (void)fread(var->data.re, elSize, nEl, fptr); |
| 1295 | (void)fclose(fptr); |
| 1296 | (void)remove(fName); |
| 1297 | } else { |
| 1298 | for (k=0; k<nEl; k++) { |
| 1299 | int_T kT = nRows*(k%nCols) + (k/nCols); |
| 1300 | char *dst = pmT + kT*elSize; |
| 1301 | (void)memcpy(dst, src, elSize); |
| 1302 | src += elSize; |
| 1303 | } |
| 1304 | if (var->data.complex) { |
| 1305 | char *pmiT = var->data.re; |
| 1306 | src = var->data.im; |
| 1307 | for (k=0; k<nEl; k++) { |
| 1308 | int_T kT = nRows*(k%nCols) + (k/nCols); |
| 1309 | char *dst = pmiT + kT*elSize; |
| 1310 | (void)memcpy(dst, src, elSize); |
| 1311 | src += elSize; |
| 1312 | } |
| 1313 | var->data.re = var->data.im; |
| 1314 | var->data.im = pmiT; |
| 1315 | } |
| 1316 | FREE(var->data.re); |
| 1317 | var->data.re = pmT; |
| 1318 | } |
| 1319 | } /* Transpose? */ |
| 1320 | |
| 1321 | if (var->wrapped > 0 && var->rowIdx != 0 ) { /* Rotate? */ |
| 1322 | char_T *buffer = var->data.re; |
| 1323 | int_T done = 0; /* done: 0 (1) rotate real (imag) part. */ |
| 1324 | |
| 1325 | do { |
| 1326 | char_T *col = buffer; |
| 1327 | int_T rowOffset = (int_T)((nDims == 1) ? (elSize) : (elSize * nCols)); |
| 1328 | int_T colOffset = (int_T)((nDims == 1)? (nRows*elSize) : elSize); |
| 1329 | int_T zeroIdx = var->rowIdx; |
| 1330 | int_T j; |
| 1331 | |
| 1332 | for (j = 0 ; j < nCols; ++j, col += colOffset) { |
| 1333 | int_T swapCount; |
| 1334 | int_T srcIdx; |
| 1335 | int_T dstIdx; |
| 1336 | int_T tmpIdx; |
| 1337 | MatReal tmp; |
| 1338 | |
| 1339 | for (tmpIdx=0, swapCount=0; swapCount < nRows; tmpIdx++) { |
| 1340 | (void)memcpy(&tmp, col + tmpIdx*rowOffset, elSize); |
| 1341 | |
| 1342 | dstIdx=tmpIdx; |
| 1343 | srcIdx = ((dstIdx + zeroIdx) % nRows); |
| 1344 | while (srcIdx != tmpIdx) { |
| 1345 | (void)memcpy(col + dstIdx*rowOffset, |
| 1346 | col + srcIdx*rowOffset, |
| 1347 | elSize); |
| 1348 | ++swapCount; |
| 1349 | dstIdx = srcIdx; |
| 1350 | srcIdx = ((dstIdx + zeroIdx) % nRows); |
| 1351 | |
| 1352 | } |
| 1353 | (void)memcpy(col + dstIdx*rowOffset, &tmp, elSize); |
| 1354 | ++swapCount; |
| 1355 | } |
| 1356 | } |
| 1357 | done ++; |
| 1358 | /* need to rotate the imaginary part */ |
| 1359 | } while ((done == 1) && ((buffer = var->data.im) != NULL)); |
| 1360 | |
| 1361 | var->rowIdx = 0; |
| 1362 | } /* Rotate? */ |
| 1363 | |
| 1364 | /* |
| 1365 | * We might have allocated more number of rows than the number of data |
| 1366 | * points that have been logged, in which case set nRows to nDataPoints |
| 1367 | * so that only these values get saved. |
| 1368 | */ |
| 1369 | if (var->nDataPoints < var->data.nRows) { |
| 1370 | var->data.nRows = var->nDataPoints; |
| 1371 | if(var->valDims != NULL){ |
| 1372 | size_t elSizeValDims = sizeof(real_T); |
| 1373 | int_T k; |
| 1374 | real_T *dimsData = var->valDims->dimsData + nRows; |
| 1375 | /* |
| 1376 | Keep nRows of values and that of valueDimensions consistent |
| 1377 | for variable-size signals. |
| 1378 | */ |
| 1379 | var->valDims->nRows = var->data.nRows; |
| 1380 | /* |
| 1381 | Also need to move data when shrinking the array size, |
| 1382 | because valueDimensions data is stored in array format. |
| 1383 | e.g. maxRows = 4; nRows = 2; nDims = 3; |
| 1384 | Before fixing up the logVar, the locations of data are as below: |
| 1385 | (x, y, z -- useful data / o -- junk) |
| 1386 | a[0] = x a[4] = y a[8] = z |
| 1387 | a[1] = x a[5] = y a[9] = z |
| 1388 | a[2] = o a[6] = o a[10]= o |
| 1389 | a[3] = o a[7] = o a[11]= o |
| 1390 | After fixing up the logVar, we want the data to be stored as: |
| 1391 | a[0] = x a[4] = z a[8] = o |
| 1392 | a[1] = x a[5] = z a[9] = o |
| 1393 | a[2] = y a[6] = o a[10]= o |
| 1394 | a[3] = y a[7] = o a[11]= o |
| 1395 | */ |
| 1396 | for(k = 1; k < nDims; k++){ |
| 1397 | (void) memmove(dimsData, |
| 1398 | var->valDims->dimsData + k*maxRows, |
| 1399 | elSizeValDims * nRows); |
| 1400 | dimsData += nRows; |
| 1401 | } |
| 1402 | } |
| 1403 | } |
| 1404 | return(NULL); |
| 1405 | |
| 1406 | } /* end rt_FixupLogVar */ |
| 1407 | |
| 1408 | |
| 1409 | /* Function: rt_LoadModifiedLogVarName ========================================= |
| 1410 | * Abstract: |
| 1411 | * The name of the logged variable is obtained from the input argument |
| 1412 | * varName and the nameModifier which is obtained from the simstruct. If |
| 1413 | * the nameModifier begins with an '_', then nameModifier is post-pended to |
| 1414 | * varName to obtain the name of the logged variable. If the first |
| 1415 | * character does not begin with an '_', then the nameModifier is |
| 1416 | * pre-pended to varName. |
| 1417 | * |
| 1418 | * Examples: |
| 1419 | * a) varName = "tout" & nameModifier = "_rt" => logVarName = "tout_rt" |
| 1420 | * b) varName = "tout" & nameModifier = "rt_" => logVarName = "rt_tout" |
| 1421 | * c) varName = "tout" & nameModifier = "none" => logVarName = "tout" |
| 1422 | */ |
| 1423 | static void rt_LoadModifiedLogVarName(const RTWLogInfo *li, /* in */ |
| 1424 | const char *varName, /* in */ |
| 1425 | char *logVarName) /* out */ |
| 1426 | { |
| 1427 | int_T nameLen; |
| 1428 | const char_T *nameModifier = rtliGetLogVarNameModifier(li); |
| 1429 | |
| 1430 | if (nameModifier != NULL && strcmp(nameModifier,"none")==0) { |
| 1431 | nameModifier = NULL; |
| 1432 | } |
| 1433 | |
| 1434 | logVarName[mxMAXNAM-1] = '\0'; |
| 1435 | if (nameModifier == NULL) { |
| 1436 | (void)strncpy(logVarName, varName, mxMAXNAM-1); |
| 1437 | } else if (nameModifier[0] == '_') { |
| 1438 | (void)strncpy(logVarName, varName, mxMAXNAM-1); |
| 1439 | nameLen = (int_T)strlen(logVarName); |
| 1440 | (void)strncat(logVarName, nameModifier, (size_t)mxMAXNAM-1-nameLen); |
| 1441 | } else { |
| 1442 | (void)strncpy(logVarName, nameModifier, mxMAXNAM-1); |
| 1443 | nameLen = (int_T)strlen(logVarName); |
| 1444 | (void)strncat(logVarName, varName, (size_t)mxMAXNAM-1-nameLen); |
| 1445 | } |
| 1446 | |
| 1447 | } /* end rt_LoadModifiedLogVarName */ |
| 1448 | |
| 1449 | |
| 1450 | /* Function: rt_GetActualDTypeID =============================================== |
| 1451 | * Abstract: |
| 1452 | * Given a built-in data type id, return the actual data type id. |
| 1453 | * The only time these are different is when real_T has been mapped |
| 1454 | * to a single. |
| 1455 | */ |
| 1456 | #if defined(_MSC_VER) |
| 1457 | #pragma warning(push) |
| 1458 | #pragma warning(disable: 4127) |
| 1459 | #endif |
| 1460 | static BuiltInDTypeId rt_GetActualDTypeID(BuiltInDTypeId dTypeID) |
| 1461 | { |
| 1462 | /*LINTED E_FALSE_LOGICAL_EXPR*/ |
| 1463 | if (dTypeID == SS_DOUBLE && sizeof(real_T) != 8) { /* polyspace DEFECT:DEAD_CODE |
| 1464 | [Not a defect:Unset] |
| 1465 | "Needed for when real_T has been |
| 1466 | mapped to a single" */ |
| 1467 | return(SS_SINGLE); |
| 1468 | } else { |
| 1469 | return(dTypeID); |
| 1470 | } |
| 1471 | |
| 1472 | } /* end rt_GetActualDTypeID */ |
| 1473 | #if defined(_MSC_VER) |
| 1474 | #pragma warning(pop) |
| 1475 | #endif |
| 1476 | |
| 1477 | |
| 1478 | /* Function: rt_DestroyLogVar ================================================== |
| 1479 | * Abstract: |
| 1480 | * Destroy the log var linked list. |
| 1481 | */ |
| 1482 | static void rt_DestroyLogVar(LogVar *head) |
| 1483 | { |
| 1484 | while(head) { |
| 1485 | LogVar *var = head; |
| 1486 | head = var->next; |
| 1487 | FREE(var->data.re); |
| 1488 | FREE(var->data.im); |
| 1489 | if (var->data.dims != var->data._dims) { |
| 1490 | FREE(var->data.dims); |
| 1491 | } |
| 1492 | /* free valDims if necessary */ |
| 1493 | if(var->valDims != NULL) { |
| 1494 | FREE(var->valDims->dimsData); |
| 1495 | FREE(var->valDims); |
| 1496 | } |
| 1497 | /* free coords, strides and currStrides if necessary */ |
| 1498 | FREE(var->coords); |
| 1499 | FREE(var->strides); |
| 1500 | FREE(var->currStrides); |
| 1501 | |
| 1502 | FREE(var); |
| 1503 | } |
| 1504 | |
| 1505 | } /* end rt_DestroyLogVar */ |
| 1506 | |
| 1507 | |
| 1508 | /* Function: rt_DestroyStructLogVar ============================================ |
| 1509 | * Abstract: |
| 1510 | * Destroy the struct log var linked list. |
| 1511 | */ |
| 1512 | static void rt_DestroyStructLogVar(StructLogVar *head) |
| 1513 | { |
| 1514 | while(head) { |
| 1515 | StructLogVar *var = head; |
| 1516 | |
| 1517 | head = var->next; |
| 1518 | |
| 1519 | if (var->logTime) { /* time is LogVar */ |
| 1520 | rt_DestroyLogVar(var->time); |
| 1521 | } else { /* time is MatrixData */ |
| 1522 | FREE(var->time); |
| 1523 | } |
| 1524 | rt_DestroyLogVar(var->signals.values); |
| 1525 | FREE(var->signals.labels); |
| 1526 | FREE(var->signals.plotStyles); |
| 1527 | FREE(var->signals.dimensions); |
| 1528 | FREE(var->signals.titles); |
| 1529 | FREE(var->signals.blockNames); |
| 1530 | FREE(var->signals.stateNames); |
| 1531 | FREE(var->signals.crossMdlRef); |
| 1532 | FREE(var->blockName); |
| 1533 | FREE(var); |
| 1534 | } |
| 1535 | |
| 1536 | } /* end rt_DestroyStructLogVar */ |
| 1537 | |
| 1538 | |
| 1539 | /* Function: rt_InitSignalsStruct ============================================== |
| 1540 | * Abstract: |
| 1541 | * Initialize the signals structure in the struct log variable. |
| 1542 | * |
| 1543 | * Returns: |
| 1544 | * == NULL => success. |
| 1545 | * ~= NULL => failure, the return value is a pointer to the error |
| 1546 | * message, which is also set in the simstruct. |
| 1547 | */ |
| 1548 | static const char_T *rt_InitSignalsStruct(RTWLogInfo *li, |
| 1549 | const real_T startTime, |
| 1550 | const real_T finalTime, |
| 1551 | const real_T inStepSize, |
| 1552 | const char_T **errStatus, |
| 1553 | StructLogVar *var, |
| 1554 | int_T maxRows, |
| 1555 | int_T decimation, |
| 1556 | real_T sampleTime, |
| 1557 | const RTWLogSignalInfo *sigInfo) |
| 1558 | { |
| 1559 | int_T i, sigIdx; |
| 1560 | SignalsStruct *sig = &(var->signals); |
| 1561 | int_T nSignals = sigInfo->numSignals; |
| 1562 | const int_T *numCols = sigInfo->numCols; |
| 1563 | const int_T *numDims = sigInfo->numDims; |
| 1564 | const int_T *dims = sigInfo->dims; |
| 1565 | const BuiltInDTypeId *dTypes = sigInfo->dataTypes; |
| 1566 | const int_T *cSgnls = sigInfo->complexSignals; |
| 1567 | const int_T *fData = sigInfo->frameData; |
| 1568 | const char_T **labels = sigInfo->labels.cptr; |
| 1569 | const int_T *plotStyles = sigInfo->plotStyles; |
| 1570 | const char_T *titles = sigInfo->titles; |
| 1571 | const int_T *titleLen = sigInfo->titleLengths; |
| 1572 | const char_T **blockNames = sigInfo->blockNames.cptr; |
| 1573 | const char_T **stateNames = sigInfo->stateNames.cptr; |
| 1574 | const boolean_T *crossMdlRef = sigInfo->crossMdlRef; |
| 1575 | void **currSigDims = sigInfo->currSigDims; |
| 1576 | int_T *currSigDimsSize = sigInfo->currSigDimsSize; |
| 1577 | LogVar *prevValues = NULL; |
| 1578 | int_T dimsOffset = 0; |
| 1579 | boolean_T *isVarDims = sigInfo->isVarDims; |
| 1580 | /* if any signal is variable-size, the field 'valueDimensions' is needed */ |
| 1581 | boolean_T logValueDimensions = false; |
| 1582 | const RTWLogDataTypeConvert *pDTConvInfo = sigInfo->dataTypeConvert; |
| 1583 | |
| 1584 | /* reset error status */ |
| 1585 | *errStatus = NULL; |
| 1586 | |
| 1587 | sig->numActiveFields = 1; |
| 1588 | sig->numSignals = nSignals; |
| 1589 | |
| 1590 | sig->isVarDims = isVarDims; |
| 1591 | /* check whether we need valueDimensions field*/ |
| 1592 | for (i=0; i<nSignals; i++){ |
| 1593 | if(isVarDims[i]){ |
| 1594 | logValueDimensions = true; |
| 1595 | break; |
| 1596 | } |
| 1597 | } |
| 1598 | |
| 1599 | /* values */ |
| 1600 | dimsOffset = 0; |
| 1601 | for (i = 0; i < nSignals; i++) { |
| 1602 | BuiltInDTypeId dt = (dTypes) ? dTypes[i] : SS_DOUBLE; |
| 1603 | int_T cs = (cSgnls) ? cSgnls[i] : 0; |
| 1604 | int_T fd = (fData) ? fData[i] : 0; |
| 1605 | int_T nd = (numDims) ? numDims[i] : 1; |
| 1606 | |
| 1607 | const RTWLogDataTypeConvert *pDTConvInfoCur = |
| 1608 | (pDTConvInfo) ? (pDTConvInfo+i) : 0; |
| 1609 | |
| 1610 | LogVar *values = NULL; |
| 1611 | LogValDimsStat logValDimsStat; |
| 1612 | |
| 1613 | if(!logValueDimensions){ |
| 1614 | logValDimsStat = NO_LOGVALDIMS; |
| 1615 | } |
| 1616 | else{ |
| 1617 | logValDimsStat = isVarDims[i] ? LOGVALDIMS_VARDIMS : |
| 1618 | LOGVALDIMS_EMPTYMX; |
| 1619 | } |
| 1620 | |
| 1621 | values = rt_CreateLogVarWithConvert(li, startTime, finalTime, |
| 1622 | inStepSize, errStatus, |
| 1623 | &VALUES_FIELD_NAME, |
| 1624 | dt, |
| 1625 | pDTConvInfoCur, |
| 1626 | 0, cs, fd, |
| 1627 | numCols[i],nd, |
| 1628 | dims + dimsOffset, |
| 1629 | logValDimsStat, |
| 1630 | currSigDims + dimsOffset, |
| 1631 | currSigDimsSize + dimsOffset, |
| 1632 | maxRows,decimation,sampleTime, 0); |
| 1633 | |
| 1634 | if (values == NULL) goto ERROR_EXIT; |
| 1635 | |
| 1636 | if (sig->values == NULL) { |
| 1637 | sig->values = values; |
| 1638 | } else { |
| 1639 | if (prevValues == NULL) goto ERROR_EXIT; |
| 1640 | prevValues->next = values; |
| 1641 | } |
| 1642 | prevValues = values; |
| 1643 | dimsOffset += nd; |
| 1644 | } |
| 1645 | |
| 1646 | if(logValueDimensions){ |
| 1647 | ++sig->numActiveFields; |
| 1648 | sig->logValueDimensions = true; |
| 1649 | } |
| 1650 | else{ |
| 1651 | sig->logValueDimensions = false; |
| 1652 | } |
| 1653 | |
| 1654 | /* Dimensions */ |
| 1655 | { |
| 1656 | real_T *data; |
| 1657 | size_t nbytes; |
| 1658 | int_T dataLen = 0; |
| 1659 | BuiltInDTypeId dTypeId = rt_GetActualDTypeID(SS_DOUBLE); |
| 1660 | size_t dataOffset = nSignals*sizeof(MatrixData); |
| 1661 | uint_T overhang = (uint_T)(dataOffset % sizeof(real_T)); |
| 1662 | |
| 1663 | if (overhang) { /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 1664 | "Needed for possible padding determination. */ |
| 1665 | dataOffset += (sizeof(real_T) - overhang); |
| 1666 | } |
| 1667 | for (i=0; i< nSignals; i++) { |
| 1668 | int_T nd = (numDims) ? numDims[i] : 1; |
| 1669 | dataLen += nd; |
| 1670 | } |
| 1671 | nbytes = dataOffset + dataLen*sizeof(real_T); |
| 1672 | |
| 1673 | if ( (sig->dimensions = calloc(nbytes, 1)) == NULL ) goto ERROR_EXIT; |
| 1674 | |
| 1675 | data = (real_T*) (((char_T*) (sig->dimensions)) + dataOffset); |
| 1676 | |
| 1677 | for (i = 0; i < dataLen; i++) { |
| 1678 | data[i] = dims[i]; /* cannot memcpy double <- int */ |
| 1679 | } |
| 1680 | |
| 1681 | for (i = 0; i < nSignals; i++) { |
| 1682 | MatrixData *mtxData = &(sig->dimensions[i]); |
| 1683 | int_T nd = (numDims) ? numDims[i] : 1; |
| 1684 | |
| 1685 | (void)memcpy(mtxData->name, &DIMENSION_FIELD_NAME, mxMAXNAM); |
| 1686 | |
| 1687 | mtxData->nRows = 1; |
| 1688 | mtxData->nCols = nd; |
| 1689 | |
| 1690 | mtxData->nDims = 1; /* assume */ |
| 1691 | mtxData->dims = mtxData->_dims; |
| 1692 | mtxData->dims[0] = mtxData->nCols; |
| 1693 | |
| 1694 | mtxData->re = data; |
| 1695 | mtxData->im = NULL; |
| 1696 | mtxData->dTypeID = dTypeId; |
| 1697 | mtxData->mxID = rt_GetMxIdFromDTypeId(dTypeId); |
| 1698 | mtxData->elSize = rt_GetSizeofDataType(dTypeId); |
| 1699 | mtxData->logical = 0U; |
| 1700 | mtxData->complex = 0U; |
| 1701 | |
| 1702 | data += nd; |
| 1703 | } |
| 1704 | ++sig->numActiveFields; |
| 1705 | } |
| 1706 | |
| 1707 | /* labels */ |
| 1708 | if (labels != NULL) { |
| 1709 | unsigned short *data; |
| 1710 | size_t nbytes; |
| 1711 | int_T dataLen = 0; |
| 1712 | size_t dataOffset = nSignals * sizeof(MatrixData); |
| 1713 | uint_T overhang = (uint_T)(dataOffset % sizeof(short)); |
| 1714 | int_T dataIdx = 0; |
| 1715 | |
| 1716 | for (i=0;i<nSignals;i++) { |
| 1717 | if (labels[i] != NULL){ |
| 1718 | dataLen = dataLen + (int_T)strlen(labels[i]); |
| 1719 | } |
| 1720 | } |
| 1721 | |
| 1722 | if (overhang) { /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 1723 | "Needed for possible padding determination. */ |
| 1724 | dataOffset += (sizeof(short) - overhang); |
| 1725 | } |
| 1726 | nbytes = dataOffset + dataLen*sizeof(short); |
| 1727 | |
| 1728 | if ( (sig->labels = calloc(nbytes, 1)) == NULL ) goto ERROR_EXIT; |
| 1729 | |
| 1730 | data = (unsigned short*) (((char_T*) (sig->labels)) + dataOffset); |
| 1731 | for(sigIdx=0;sigIdx<nSignals;sigIdx++) { |
| 1732 | int_T labelLen = (labels[sigIdx]==NULL) ? 0 : (int_T)strlen(labels[sigIdx]); |
| 1733 | for (i = 0; i < labelLen; i++) { |
| 1734 | data[dataIdx++] = (uint8_T)labels[sigIdx][i]; |
| 1735 | } |
| 1736 | } |
| 1737 | |
| 1738 | for (i = 0; i < nSignals; i++) { |
| 1739 | MatrixData *mtxData = &(sig->labels[i]); |
| 1740 | int_T labelLen = (int_T)strlen(labels[i]); |
| 1741 | |
| 1742 | (void)memcpy(mtxData->name, &LABEL_FIELD_NAME, mxMAXNAM); |
| 1743 | mtxData->nRows = (labelLen) ? 1 : 0; |
| 1744 | mtxData->nCols = labelLen; |
| 1745 | |
| 1746 | mtxData->re = data; |
| 1747 | mtxData->im = NULL; |
| 1748 | |
| 1749 | mtxData->nDims = 1; /* assume */ |
| 1750 | mtxData->dims = mtxData->_dims; |
| 1751 | mtxData->dims[0] = mtxData->nCols; |
| 1752 | |
| 1753 | mtxData->dTypeID = SS_INT16; |
| 1754 | mtxData->mxID = mxCHAR_CLASS; |
| 1755 | mtxData->elSize = sizeof(short); |
| 1756 | mtxData->logical = 0U; |
| 1757 | mtxData->complex = 0U; |
| 1758 | |
| 1759 | data += labelLen; |
| 1760 | } |
| 1761 | ++sig->numActiveFields; |
| 1762 | } |
| 1763 | |
| 1764 | /* plot styles */ |
| 1765 | if (plotStyles != NULL) { |
| 1766 | real_T *data; |
| 1767 | size_t nbytes; |
| 1768 | int_T dataLen = 0; |
| 1769 | BuiltInDTypeId dTypeId = rt_GetActualDTypeID(SS_DOUBLE); |
| 1770 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 1771 | size_t dataOffset = nSignals*sizeof(MatrixData); |
| 1772 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 1773 | uint_T overhang = (uint_T)(dataOffset % sizeof(real_T)); |
| 1774 | |
| 1775 | if (overhang) { /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 1776 | "Needed for possible padding determination. */ |
| 1777 | dataOffset += (sizeof(real_T) - overhang); |
| 1778 | } |
| 1779 | for (i=0; i< nSignals; i++) { |
| 1780 | dataLen += numCols[i]; |
| 1781 | } |
| 1782 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 1783 | nbytes = dataOffset + dataLen*sizeof(real_T); |
| 1784 | |
| 1785 | if ( (sig->plotStyles = calloc(nbytes, 1)) == NULL ) goto ERROR_EXIT; |
| 1786 | |
| 1787 | /*LINTED E_BAD_PTR_CAST_ALIGN*/ |
| 1788 | data = (real_T*) (((char_T*) (sig->plotStyles)) + dataOffset); |
| 1789 | |
| 1790 | for (i = 0; i < dataLen; i++) { |
| 1791 | data[i] = plotStyles[i]; |
| 1792 | } |
| 1793 | |
| 1794 | dimsOffset = 0; |
| 1795 | for (i = 0; i < nSignals; i++) { |
| 1796 | MatrixData *mtxData = &(sig->plotStyles[i]); |
| 1797 | |
| 1798 | (void)memcpy(mtxData->name, &PLOTSTYLE_FIELD_NAME, mxMAXNAM); |
| 1799 | |
| 1800 | mtxData->nRows = (numCols[i]) ? 1 : 0; |
| 1801 | mtxData->nCols = numCols[i]; |
| 1802 | |
| 1803 | mtxData->nDims = numDims[i]; |
| 1804 | |
| 1805 | if(mtxData->nDims > 2) { |
| 1806 | if ((mtxData->dims = calloc(mtxData->nDims, sizeof(int_T))) == NULL) goto ERROR_EXIT; |
| 1807 | } else { |
| 1808 | mtxData->dims = mtxData->_dims; |
| 1809 | } |
| 1810 | |
| 1811 | mtxData->dims[0] = *(dims + dimsOffset); |
| 1812 | if(mtxData->nDims >= 2) { |
| 1813 | int32_T j; |
| 1814 | for (j=1; j<mtxData->nDims; j++) { |
| 1815 | mtxData->dims[j] = *(dims + dimsOffset + j); |
| 1816 | } |
| 1817 | } |
| 1818 | |
| 1819 | mtxData->re = data; |
| 1820 | mtxData->im = NULL; |
| 1821 | mtxData->dTypeID = dTypeId; |
| 1822 | mtxData->mxID = rt_GetMxIdFromDTypeId(dTypeId); |
| 1823 | mtxData->elSize = rt_GetSizeofDataType(dTypeId); |
| 1824 | mtxData->logical = 0U; |
| 1825 | mtxData->complex = 0U; |
| 1826 | |
| 1827 | data += numCols[i]; |
| 1828 | dimsOffset += numDims[i]; |
| 1829 | } |
| 1830 | ++sig->numActiveFields; |
| 1831 | } |
| 1832 | |
| 1833 | /* titles */ |
| 1834 | if (titles != NULL) { |
| 1835 | unsigned short *data; |
| 1836 | size_t nbytes; |
| 1837 | int_T dataLen = (int_T)strlen(titles); |
| 1838 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 1839 | size_t dataOffset = nSignals * sizeof(MatrixData); |
| 1840 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 1841 | uint_T overhang = (uint_T)(dataOffset % sizeof(short)); |
| 1842 | |
| 1843 | if (overhang) { /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 1844 | "Needed for possible padding determination. */ |
| 1845 | dataOffset += (sizeof(short) - overhang); |
| 1846 | } |
| 1847 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 1848 | nbytes = dataOffset + dataLen*sizeof(short); |
| 1849 | |
| 1850 | if ( (sig->titles = calloc(nbytes, 1)) == NULL ) goto ERROR_EXIT; |
| 1851 | |
| 1852 | /*LINTED E_BAD_PTR_CAST_ALIGN*/ |
| 1853 | data = (unsigned short*) (((char_T*) (sig->titles)) + dataOffset); |
| 1854 | for (i = 0; i < dataLen; i++) { |
| 1855 | data[i] = titles[i]; |
| 1856 | } |
| 1857 | |
| 1858 | for (i = 0; i < nSignals; i++) { |
| 1859 | MatrixData *mtxData = &(sig->titles[i]); |
| 1860 | |
| 1861 | (void)memcpy(mtxData->name, &TITLE_FIELD_NAME, mxMAXNAM); |
| 1862 | if (titleLen) { |
| 1863 | mtxData->nRows = (titleLen[i]) ? 1 : 0; |
| 1864 | mtxData->nCols = titleLen[i]; |
| 1865 | } else { |
| 1866 | mtxData->nRows = (dataLen) ? 1 : 0; |
| 1867 | mtxData->nCols = dataLen; |
| 1868 | } |
| 1869 | |
| 1870 | mtxData->nDims = 1; /* assume */ |
| 1871 | mtxData->dims = mtxData->_dims; |
| 1872 | mtxData->dims[0] = mtxData->nCols; |
| 1873 | |
| 1874 | mtxData->re = data; |
| 1875 | mtxData->im = NULL; |
| 1876 | mtxData->dTypeID = SS_INT16; |
| 1877 | mtxData->mxID = mxCHAR_CLASS; |
| 1878 | mtxData->elSize = sizeof(short); |
| 1879 | mtxData->logical = 0U; |
| 1880 | mtxData->complex = 0U; |
| 1881 | |
| 1882 | data += ((titleLen) ? titleLen[i] : dataLen); |
| 1883 | } |
| 1884 | ++sig->numActiveFields; |
| 1885 | } |
| 1886 | |
| 1887 | /* block names */ |
| 1888 | if (blockNames != NULL) { |
| 1889 | unsigned short *data; |
| 1890 | size_t nbytes; |
| 1891 | int_T dataLen = 0; |
| 1892 | size_t dataOffset = nSignals * sizeof(MatrixData); |
| 1893 | uint_T overhang = (uint_T)(dataOffset % sizeof(short)); |
| 1894 | int_T dataIdx = 0; |
| 1895 | |
| 1896 | for (i=0;i<nSignals;i++) { |
| 1897 | if (blockNames[i] != NULL) { |
| 1898 | dataLen = dataLen + (int_T)strlen(blockNames[i]); |
| 1899 | } |
| 1900 | } |
| 1901 | |
| 1902 | if (overhang) { /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 1903 | "Needed for possible padding determination. */ |
| 1904 | dataOffset += (sizeof(short) - overhang); |
| 1905 | } |
| 1906 | |
| 1907 | nbytes = dataOffset + dataLen*sizeof(short); |
| 1908 | |
| 1909 | if ( (sig->blockNames = calloc(nbytes, 1)) == NULL ) goto ERROR_EXIT; |
| 1910 | |
| 1911 | data = (unsigned short*) (((char_T*) (sig->blockNames)) + dataOffset); |
| 1912 | |
| 1913 | for(sigIdx=0;sigIdx<nSignals;sigIdx++) { |
| 1914 | int_T nameLen = (blockNames[sigIdx]==NULL) ? 0 : |
| 1915 | (int_T)strlen(blockNames[sigIdx]); |
| 1916 | for (i = 0; i < nameLen; i++) { |
| 1917 | data[dataIdx++] = (uint8_T)blockNames[sigIdx][i]; |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | for (i = 0; i < nSignals; i++) { |
| 1922 | MatrixData *mtxData = &(sig->blockNames[i]); |
| 1923 | int_T blockNameLen = (int_T)strlen(blockNames[i]); |
| 1924 | |
| 1925 | (void)memcpy(mtxData->name, &BLOCKNAME_FIELD_NAME, mxMAXNAM); |
| 1926 | mtxData->nRows = (blockNameLen) ? 1 : 0; |
| 1927 | mtxData->nCols = blockNameLen; |
| 1928 | |
| 1929 | mtxData->nDims = 1; /* assume */ |
| 1930 | mtxData->dims = mtxData->_dims; |
| 1931 | mtxData->dims[0] = mtxData->nCols; |
| 1932 | |
| 1933 | mtxData->re = data; |
| 1934 | mtxData->im = NULL; |
| 1935 | mtxData->dTypeID = SS_INT16; |
| 1936 | mtxData->mxID = mxCHAR_CLASS; |
| 1937 | mtxData->elSize = sizeof(short); |
| 1938 | mtxData->logical = 0U; |
| 1939 | mtxData->complex = 0U; |
| 1940 | |
| 1941 | data += blockNameLen; |
| 1942 | } |
| 1943 | ++sig->numActiveFields; |
| 1944 | if(logValueDimensions){ |
| 1945 | sig->fieldNames = rtGlobalLoggingSignalsStructFieldNames; |
| 1946 | } |
| 1947 | else{ |
| 1948 | sig->fieldNames = rtGlobalLoggingSignalsStructFieldNames_noValDims; |
| 1949 | } |
| 1950 | |
| 1951 | } else { |
| 1952 | if(logValueDimensions){ |
| 1953 | sig->fieldNames = rtLocalLoggingSignalsStructFieldNames; |
| 1954 | } |
| 1955 | else{ |
| 1956 | sig->fieldNames = rtLocalLoggingSignalsStructFieldNames_noValDims; |
| 1957 | } |
| 1958 | |
| 1959 | } |
| 1960 | |
| 1961 | /* state names */ |
| 1962 | if (stateNames != NULL) { |
| 1963 | unsigned short *data; |
| 1964 | size_t nbytes; |
| 1965 | int_T dataLen = 0; |
| 1966 | size_t dataOffset = nSignals * sizeof(MatrixData); |
| 1967 | uint_T overhang = (uint_T)(dataOffset % sizeof(short)); |
| 1968 | int_T dataIdx = 0; |
| 1969 | |
| 1970 | for (i=0;i<nSignals;i++) { |
| 1971 | if (stateNames[i] != NULL) { |
| 1972 | dataLen = dataLen + (int_T)strlen(stateNames[i]); |
| 1973 | } |
| 1974 | } |
| 1975 | |
| 1976 | if (overhang) { /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 1977 | "Needed for possible padding determination. */ |
| 1978 | dataOffset += (sizeof(short) - overhang); |
| 1979 | } |
| 1980 | |
| 1981 | nbytes = dataOffset + dataLen*sizeof(short); |
| 1982 | |
| 1983 | if ( (sig->stateNames = calloc(nbytes, 1)) == NULL ) goto ERROR_EXIT; |
| 1984 | |
| 1985 | data = (unsigned short*) (((char_T*) (sig->stateNames)) + dataOffset); |
| 1986 | |
| 1987 | for(sigIdx=0;sigIdx<nSignals;sigIdx++) { |
| 1988 | int_T nameLen = (stateNames[sigIdx]==NULL) ? 0 : |
| 1989 | (int_T)strlen(stateNames[sigIdx]); |
| 1990 | for (i = 0; i < nameLen; i++) { |
| 1991 | data[dataIdx++] = (uint8_T)stateNames[sigIdx][i]; |
| 1992 | } |
| 1993 | } |
| 1994 | |
| 1995 | for (i = 0; i < nSignals; i++) { |
| 1996 | MatrixData *mtxData = &(sig->stateNames[i]); |
| 1997 | int_T stateNameLen = (int_T)strlen(stateNames[i]); |
| 1998 | |
| 1999 | (void)memcpy(mtxData->name, &STATENAME_FIELD_NAME, mxMAXNAM); |
| 2000 | mtxData->nRows = (stateNameLen) ? 1 : 0; |
| 2001 | mtxData->nCols = stateNameLen; |
| 2002 | |
| 2003 | mtxData->nDims = 1; /* assume */ |
| 2004 | mtxData->dims = mtxData->_dims; |
| 2005 | mtxData->dims[0] = mtxData->nCols; |
| 2006 | |
| 2007 | mtxData->re = data; |
| 2008 | mtxData->im = NULL; |
| 2009 | mtxData->dTypeID = SS_INT16; |
| 2010 | mtxData->mxID = mxCHAR_CLASS; |
| 2011 | mtxData->elSize = sizeof(short); |
| 2012 | mtxData->logical = 0U; |
| 2013 | mtxData->complex = 0U; |
| 2014 | |
| 2015 | data += stateNameLen; |
| 2016 | } |
| 2017 | ++sig->numActiveFields; |
| 2018 | |
| 2019 | if(logValueDimensions){ |
| 2020 | sig->fieldNames = rtGlobalLoggingSignalsStructFieldNames; |
| 2021 | } |
| 2022 | else{ |
| 2023 | sig->fieldNames = rtGlobalLoggingSignalsStructFieldNames_noValDims; |
| 2024 | } |
| 2025 | |
| 2026 | } |
| 2027 | |
| 2028 | /* CrossMdlRef */ |
| 2029 | if (crossMdlRef != NULL) { |
| 2030 | real_T *data; |
| 2031 | size_t nbytes; |
| 2032 | size_t dataOffset = nSignals * sizeof(MatrixData); |
| 2033 | uint_T overhang = (uint_T)(dataOffset % sizeof(real_T)); |
| 2034 | |
| 2035 | if (overhang) { /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 2036 | "Needed for possible padding determination. */ |
| 2037 | dataOffset += (sizeof(real_T) - overhang); |
| 2038 | } |
| 2039 | |
| 2040 | nbytes = dataOffset + nSignals*sizeof(real_T); |
| 2041 | |
| 2042 | if ( (sig->crossMdlRef = calloc(nbytes, 1)) == NULL ) goto ERROR_EXIT; |
| 2043 | |
| 2044 | data = (real_T*) (((char_T*) (sig->crossMdlRef)) + dataOffset); |
| 2045 | |
| 2046 | for(sigIdx=0;sigIdx<nSignals;sigIdx++) { |
| 2047 | data[sigIdx] = crossMdlRef[sigIdx]; |
| 2048 | } |
| 2049 | |
| 2050 | for (i = 0; i < nSignals; i++) { |
| 2051 | MatrixData *mtxData = &(sig->crossMdlRef[i]); |
| 2052 | |
| 2053 | (void)memcpy(mtxData->name, &CROSS_MDL_REF_FIELD_NAME, mxMAXNAM); |
| 2054 | mtxData->nRows = 1; |
| 2055 | mtxData->nCols = 1; |
| 2056 | mtxData->nDims = 1; /* => matlab scalar */ |
| 2057 | |
| 2058 | mtxData->re = &data[i]; |
| 2059 | mtxData->im = NULL; |
| 2060 | mtxData->dTypeID = SS_DOUBLE; |
| 2061 | mtxData->mxID = rt_GetMxIdFromDTypeId(SS_DOUBLE); |
| 2062 | mtxData->elSize = sizeof(real_T); |
| 2063 | mtxData->logical = matLOGICAL_BIT; |
| 2064 | mtxData->complex = 0U; |
| 2065 | mtxData->frameData = 0; |
| 2066 | mtxData->frameSize = 1; |
| 2067 | } |
| 2068 | ++sig->numActiveFields; |
| 2069 | } |
| 2070 | |
| 2071 | return(NULL); /* NORMAL_EXIT */ |
| 2072 | |
| 2073 | ERROR_EXIT: |
| 2074 | |
| 2075 | (void)fprintf(stderr, "*** Error creating signals structure " |
| 2076 | "in the struct log variable %s\n", var->name); |
| 2077 | if (*errStatus == NULL) { |
| 2078 | *errStatus = rtMemAllocError; |
| 2079 | } |
| 2080 | rt_DestroyLogVar(sig->values); |
| 2081 | FREE(sig->labels); |
| 2082 | FREE(sig->plotStyles); |
| 2083 | FREE(sig->dimensions); |
| 2084 | FREE(sig->titles); |
| 2085 | FREE(sig->blockNames); |
| 2086 | FREE(sig->stateNames); |
| 2087 | FREE(sig->crossMdlRef); |
| 2088 | return(*errStatus); |
| 2089 | |
| 2090 | } /* end rt_InitSignalsStruct */ |
| 2091 | |
| 2092 | |
| 2093 | /* Function: local_CreateStructLogVar ========================================== |
| 2094 | * Abstract: |
| 2095 | * Create a logging variable in the structure format. |
| 2096 | * |
| 2097 | * Returns: |
| 2098 | * ~= NULL => success, returns the log variable created. |
| 2099 | * == NULL => failure, error message set in the simstruct. |
| 2100 | */ |
| 2101 | static StructLogVar *local_CreateStructLogVar( |
| 2102 | RTWLogInfo *li, |
| 2103 | const real_T startTime, |
| 2104 | const real_T finalTime, |
| 2105 | const real_T inStepSize, |
| 2106 | const char_T **errStatus, |
| 2107 | const char_T *varName, |
| 2108 | boolean_T logTime, |
| 2109 | int_T maxRows, |
| 2110 | int_T decimation, |
| 2111 | real_T sampleTime, |
| 2112 | const RTWLogSignalInfo *sigInfo, |
| 2113 | const char_T *blockName) |
| 2114 | { |
| 2115 | StructLogVar *var; |
| 2116 | LogInfo *logInfo = rtliGetLogInfo(li); |
| 2117 | |
| 2118 | /* reset error status */ |
| 2119 | *errStatus = NULL; |
| 2120 | |
| 2121 | if ( (var = calloc(1, sizeof(StructLogVar))) == NULL ) goto ERROR_EXIT; |
| 2122 | |
| 2123 | var->numActiveFields = 2; |
| 2124 | |
| 2125 | /* Setup the structure name using varName and nameModifier */ |
| 2126 | rt_LoadModifiedLogVarName(li,varName,var->name); |
| 2127 | |
| 2128 | /* time field */ |
| 2129 | if (logTime) { |
| 2130 | /* need to create a LogVar to log time */ |
| 2131 | int_T dims = 1; |
| 2132 | var->time = rt_CreateLogVarWithConvert(li, startTime, finalTime, |
| 2133 | inStepSize, errStatus, |
| 2134 | &TIME_FIELD_NAME, SS_DOUBLE, |
| 2135 | NULL, |
| 2136 | 0, 0, 0, 1, |
| 2137 | 1, &dims, NO_LOGVALDIMS, |
| 2138 | NULL, NULL, maxRows, |
| 2139 | decimation, sampleTime, 0); |
| 2140 | if (var->time == NULL) goto ERROR_EXIT; |
| 2141 | } else { |
| 2142 | /* create a dummy MatrixData to write out time as an empty matrix */ |
| 2143 | BuiltInDTypeId dt = rt_GetActualDTypeID(SS_DOUBLE); |
| 2144 | size_t nbytes = sizeof(MatrixData); |
| 2145 | MatrixData *time; |
| 2146 | |
| 2147 | if ( (var->time = calloc(nbytes, 1)) == NULL ) goto ERROR_EXIT; |
| 2148 | time = var->time; |
| 2149 | |
| 2150 | (void)memcpy(time->name, &TIME_FIELD_NAME, mxMAXNAM); |
| 2151 | time->nRows = 0; |
| 2152 | time->nCols = 0; |
| 2153 | time->nDims = 0; |
| 2154 | time->re = NULL; |
| 2155 | time->im = NULL; |
| 2156 | time->dTypeID = dt; |
| 2157 | time->mxID = rt_GetMxIdFromDTypeId(dt); |
| 2158 | time->elSize = rt_GetSizeofDataType(dt); |
| 2159 | time->logical = 0U; |
| 2160 | time->complex = 0U; |
| 2161 | } |
| 2162 | var->logTime = logTime; |
| 2163 | |
| 2164 | /* signals field */ |
| 2165 | if (sigInfo) { |
| 2166 | if (rt_InitSignalsStruct(li,startTime,finalTime,inStepSize,errStatus, |
| 2167 | var,maxRows,decimation,sampleTime,sigInfo)) { |
| 2168 | goto ERROR_EXIT; |
| 2169 | } |
| 2170 | } |
| 2171 | |
| 2172 | /* blockName Field */ |
| 2173 | if (blockName != NULL) { |
| 2174 | int_T dataLen = (int_T)strlen(blockName); |
| 2175 | size_t nbytes; |
| 2176 | size_t dataOffset = sizeof(MatrixData); |
| 2177 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 2178 | uint_T overhang = (uint_T)(dataOffset % sizeof(short)); |
| 2179 | |
| 2180 | if (overhang) { /* polyspace DEFECT:DEAD_CODE [Not a defect:Unset] |
| 2181 | "Needed for possible padding determination. */ |
| 2182 | dataOffset += (sizeof(short) - overhang); |
| 2183 | } |
| 2184 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 2185 | nbytes = dataOffset + dataLen*sizeof(short); |
| 2186 | |
| 2187 | if ( (var->blockName = calloc(nbytes, 1)) == NULL ) goto ERROR_EXIT; |
| 2188 | |
| 2189 | (void)memcpy(var->blockName->name, &BLOCKNAME_FIELD_NAME, mxMAXNAM); |
| 2190 | var->blockName->nRows = (dataLen) ? 1 : 0; |
| 2191 | var->blockName->nCols = dataLen; |
| 2192 | |
| 2193 | var->blockName->nDims = 1; |
| 2194 | var->blockName->dims = var->blockName->_dims; |
| 2195 | var->blockName->dims[0] = dataLen; |
| 2196 | { |
| 2197 | /*LINTED E_BAD_PTR_CAST_ALIGN*/ |
| 2198 | unsigned short *data = (unsigned short*)(((char_T*) (var->blockName))+dataOffset); |
| 2199 | int_T i; |
| 2200 | |
| 2201 | for (i=0; i<dataLen; i++) { |
| 2202 | data[i] = (uint8_T)blockName[i]; |
| 2203 | } |
| 2204 | var->blockName->re = data; |
| 2205 | } |
| 2206 | var->blockName->im = NULL; |
| 2207 | var->blockName->dTypeID = SS_INT16; |
| 2208 | var->blockName->mxID = mxCHAR_CLASS; |
| 2209 | var->blockName->elSize = sizeof(short); |
| 2210 | var->blockName->logical = 0U; |
| 2211 | var->blockName->complex = 0U; |
| 2212 | |
| 2213 | ++var->numActiveFields; |
| 2214 | } |
| 2215 | |
| 2216 | /* Add this struct log var to the linked list in log info */ |
| 2217 | { |
| 2218 | StructLogVar *list = logInfo->structLogVarsList; |
| 2219 | |
| 2220 | if (list != NULL) { |
| 2221 | while (list->next != NULL) { |
| 2222 | list = list->next; |
| 2223 | } |
| 2224 | list->next = var; |
| 2225 | } else { |
| 2226 | logInfo->structLogVarsList = var; |
| 2227 | } |
| 2228 | } |
| 2229 | |
| 2230 | return(var); /* NORMAL_EXIT */ |
| 2231 | |
| 2232 | ERROR_EXIT: |
| 2233 | (void)fprintf(stderr, "*** Error creating log variable %s\n", varName); |
| 2234 | if (*errStatus == NULL) { |
| 2235 | *errStatus = rtMemAllocError; |
| 2236 | } |
| 2237 | rt_DestroyStructLogVar(var); |
| 2238 | return(NULL); |
| 2239 | |
| 2240 | } /* end local_CreateStructLogVar */ |
| 2241 | |
| 2242 | |
| 2243 | /* Function: rt_StartDataLoggingForOutput ====================================== |
| 2244 | * Abstract: |
| 2245 | */ |
| 2246 | static const char_T *rt_StartDataLoggingForOutput(RTWLogInfo *li, |
| 2247 | const real_T startTime, |
| 2248 | const real_T finalTime, |
| 2249 | const real_T stepSize, |
| 2250 | const char_T **errStatus) |
| 2251 | { |
| 2252 | const char_T *varName; |
| 2253 | real_T sampleTime = stepSize; |
| 2254 | int_T maxRows = rtliGetLogMaxRows(li); |
| 2255 | int_T decimation = rtliGetLogDecimation(li); |
| 2256 | int_T logFormat = rtliGetLogFormat(li); |
| 2257 | boolean_T logTime = (logFormat==2) ? 1 : 0; |
| 2258 | |
| 2259 | LogInfo * logInfo; |
| 2260 | logInfo = rtliGetLogInfo(li); |
| 2261 | |
| 2262 | /* reset error status */ |
| 2263 | *errStatus = NULL; |
| 2264 | |
| 2265 | /* outputs */ |
| 2266 | varName = rtliGetLogY(li); |
| 2267 | if (varName[0] != '\0') { |
| 2268 | int_T i; |
| 2269 | int_T ny; |
| 2270 | int_T yIdx; |
| 2271 | char_T name[mxMAXNAM]; |
| 2272 | const char_T *cp = strchr(varName,','); |
| 2273 | LogSignalPtrsType ySigPtrs = rtliGetLogYSignalPtrs(li); |
| 2274 | const RTWLogSignalInfo *yInfo = rtliGetLogYSignalInfo(li); |
| 2275 | |
| 2276 | /* count the number of variables (matrices or structures) to create */ |
| 2277 | for (ny=1; cp != NULL; ny++) { |
| 2278 | cp = strchr(cp+1,','); |
| 2279 | } |
| 2280 | logInfo->ny = ny; |
| 2281 | |
| 2282 | if (logFormat==0) { |
| 2283 | if ( (logInfo->y = calloc(ny,sizeof(LogVar*))) == NULL ) { |
| 2284 | *errStatus = rtMemAllocError; |
| 2285 | goto ERROR_EXIT; |
| 2286 | } |
| 2287 | } else { |
| 2288 | if ( (logInfo->y = calloc(ny,sizeof(StructLogVar*))) == NULL ) { |
| 2289 | *errStatus = rtMemAllocError; |
| 2290 | goto ERROR_EXIT; |
| 2291 | } |
| 2292 | } |
| 2293 | |
| 2294 | for (i = yIdx = 0, cp = varName; i < ny; i++) { |
| 2295 | int_T len; |
| 2296 | const char_T *cp1 = strchr(cp+1,','); |
| 2297 | |
| 2298 | if (cp1 != NULL) { |
| 2299 | /*LINTED E_ASSIGN_INT_TO_SMALL_INT*/ |
| 2300 | len = (int_T)(cp1 - cp); |
| 2301 | if (len >= mxMAXNAM) len = mxMAXNAM - 1; |
| 2302 | } else { |
| 2303 | len = mxMAXNAM - 1; |
| 2304 | } |
| 2305 | (void)strncpy(name, cp, len); |
| 2306 | name[len] = '\0'; |
| 2307 | |
| 2308 | if (ny > 1 && ySigPtrs[i] == NULL) { |
| 2309 | goto NEXT_NAME; |
| 2310 | } |
| 2311 | |
| 2312 | if (logFormat == 0) { |
| 2313 | int numCols; |
| 2314 | int nDims; |
| 2315 | const int *dims; |
| 2316 | BuiltInDTypeId dataType; |
| 2317 | int isComplex; |
| 2318 | |
| 2319 | if (ny == 1) { |
| 2320 | int_T op; |
| 2321 | |
| 2322 | numCols = yInfo[0].numCols[0]; |
| 2323 | for (op = 1; op < yInfo[0].numSignals; op++) { |
| 2324 | numCols += yInfo[0].numCols[op]; |
| 2325 | } |
| 2326 | /* |
| 2327 | * If we have only one "matrix" outport, |
| 2328 | * we can still log it as a matrix |
| 2329 | */ |
| 2330 | if (yInfo[0].numSignals == 1) { |
| 2331 | nDims = yInfo[0].numDims ? yInfo[0].numDims[0] : 1; |
| 2332 | dims = yInfo[0].dims; |
| 2333 | } else { |
| 2334 | nDims = 1; |
| 2335 | dims = &numCols; |
| 2336 | } |
| 2337 | |
| 2338 | dataType = yInfo[0].dataTypes[0]; |
| 2339 | isComplex = yInfo[0].complexSignals[0]; |
| 2340 | } else { |
| 2341 | numCols = yInfo[yIdx].numCols[0]; |
| 2342 | nDims = yInfo[yIdx].numDims ? yInfo[yIdx].numDims[0] : 1; |
| 2343 | dims = yInfo[yIdx].dims; |
| 2344 | dataType = yInfo[yIdx].dataTypes[0]; |
| 2345 | isComplex = yInfo[yIdx].complexSignals[0]; |
| 2346 | } |
| 2347 | |
| 2348 | logInfo->y[yIdx] = rt_CreateLogVarWithConvert( |
| 2349 | li, startTime, finalTime, |
| 2350 | stepSize, errStatus, |
| 2351 | name, |
| 2352 | dataType, |
| 2353 | yInfo[yIdx].dataTypeConvert, |
| 2354 | 0,isComplex, |
| 2355 | 0,numCols,nDims,dims, |
| 2356 | NO_LOGVALDIMS, NULL, NULL, |
| 2357 | maxRows,decimation, |
| 2358 | sampleTime,1); |
| 2359 | if (logInfo->y[yIdx] == NULL) goto ERROR_EXIT; |
| 2360 | } else { |
| 2361 | logInfo->y[yIdx] = local_CreateStructLogVar(li, startTime, |
| 2362 | finalTime, stepSize, |
| 2363 | errStatus, name, |
| 2364 | logTime, maxRows, |
| 2365 | decimation, sampleTime, |
| 2366 | &yInfo[yIdx], NULL); |
| 2367 | if (logInfo->y[yIdx] == NULL) goto ERROR_EXIT; |
| 2368 | } |
| 2369 | ++yIdx; |
| 2370 | NEXT_NAME: |
| 2371 | cp = cp1; |
| 2372 | if (cp != NULL && *cp == ',') cp++; |
| 2373 | } |
| 2374 | } |
| 2375 | |
| 2376 | return(NULL); /* NORMAL_EXIT */ |
| 2377 | |
| 2378 | ERROR_EXIT: |
| 2379 | (void)fprintf(stderr, "*** Errors occurred when starting data logging.\n"); |
| 2380 | if (*errStatus == NULL) { |
| 2381 | *errStatus = rtMemAllocError; |
| 2382 | } |
| 2383 | if (logInfo) { /* polyspace DEFECT:USELESS_IF [No action planned:Unset] |
| 2384 | "Defense coding." */ |
| 2385 | rt_DestroyLogVar(logInfo->logVarsList); |
| 2386 | logInfo->logVarsList = NULL; |
| 2387 | rt_DestroyStructLogVar(logInfo->structLogVarsList); |
| 2388 | logInfo->structLogVarsList = NULL; |
| 2389 | FREE(logInfo->y); |
| 2390 | logInfo->y = NULL; |
| 2391 | } |
| 2392 | return(*errStatus); |
| 2393 | |
| 2394 | } /* end rt_StartDataLoggingForOutput */ |
| 2395 | |
| 2396 | |
| 2397 | /* Function: rt_ReallocLogVar ================================================== |
| 2398 | * Abstract: |
| 2399 | * Allocate more memory for the data buffers in the log variable. |
| 2400 | * Exit if unable to allocate more memory. |
| 2401 | */ |
| 2402 | static void rt_ReallocLogVar(LogVar *var, boolean_T isVarDims) |
| 2403 | { |
| 2404 | void *tmp; |
| 2405 | int_T nCols = var->data.nCols; |
| 2406 | int_T nRows; |
| 2407 | size_t elSize = var->data.elSize; |
| 2408 | |
| 2409 | if (isVarDims) |
| 2410 | { |
| 2411 | nRows = var->data.nRows + DEFAULT_BUFFER_SIZE; |
| 2412 | } |
| 2413 | else |
| 2414 | { |
| 2415 | nRows = var->data.nRows == 0 ? 1 : 2*var->data.nRows; |
| 2416 | } |
| 2417 | |
| 2418 | tmp = realloc(var->data.re, nRows*nCols*elSize); |
| 2419 | if (tmp == NULL) { |
| 2420 | (void)fprintf(stderr, |
| 2421 | "*** Memory allocation error.\n"); |
| 2422 | (void)fprintf(stderr, "" |
| 2423 | " varName = %s%s\n" |
| 2424 | " nRows = %d\n" |
| 2425 | " nCols = %d\n" |
| 2426 | " elementSize = %lu\n" |
| 2427 | " Current Size = %.16g\n" |
| 2428 | " Failed resize = %.16g\n\n", |
| 2429 | var->data.name, |
| 2430 | var->data.complex ? " (real part)" : "", |
| 2431 | var->data.nRows, |
| 2432 | var->data.nCols, |
| 2433 | (unsigned long) var->data.elSize, |
| 2434 | (double)nRows*nCols*elSize, |
| 2435 | (double)(nRows+DEFAULT_BUFFER_SIZE)*nCols*elSize); |
| 2436 | exit(1); |
| 2437 | } |
| 2438 | var->data.re = tmp; |
| 2439 | |
| 2440 | if (var->data.complex) { |
| 2441 | tmp = realloc(var->data.im, nRows*nCols*elSize); |
| 2442 | if (tmp == NULL) { |
| 2443 | (void)fprintf(stderr, |
| 2444 | "*** Memory allocation error.\n"); |
| 2445 | (void)fprintf(stderr, "" |
| 2446 | " varName = %s (complex part)\n" |
| 2447 | " nRows = %d\n" |
| 2448 | " nCols = %d\n" |
| 2449 | " elementSize = %lu\n" |
| 2450 | " Current Size = %.16g\n" |
| 2451 | " Failed resize = %.16g\n\n", |
| 2452 | var->data.name, |
| 2453 | var->data.nRows, |
| 2454 | var->data.nCols, |
| 2455 | (unsigned long) var->data.elSize, |
| 2456 | (double)nRows*nCols*elSize, |
| 2457 | (double)(nRows+DEFAULT_BUFFER_SIZE)*nCols*elSize); |
| 2458 | exit(1); |
| 2459 | } |
| 2460 | var->data.im = tmp; |
| 2461 | } |
| 2462 | var->data.nRows = nRows; |
| 2463 | |
| 2464 | /* Also reallocate memory for "valueDimensions" |
| 2465 | when logging the variable-size signal |
| 2466 | */ |
| 2467 | if(isVarDims){ |
| 2468 | int_T k; |
| 2469 | |
| 2470 | nCols = var->valDims->nCols; |
| 2471 | nRows = var->valDims->nRows + DEFAULT_BUFFER_SIZE; |
| 2472 | elSize = sizeof(real_T); |
| 2473 | tmp = realloc(var->valDims->dimsData, nRows*nCols*elSize); |
| 2474 | if (tmp == NULL) { |
| 2475 | (void)fprintf(stderr, |
| 2476 | "*** Memory allocation error.\n"); |
| 2477 | (void)fprintf(stderr, "" |
| 2478 | " varName = %s\n" |
| 2479 | " nRows = %d\n" |
| 2480 | " nCols = %d\n" |
| 2481 | " elementSize = %lu\n" |
| 2482 | " Current Size = %.16g\n" |
| 2483 | " Failed resize = %.16g\n\n", |
| 2484 | var->valDims->name, |
| 2485 | var->valDims->nRows, |
| 2486 | var->valDims->nCols, |
| 2487 | (unsigned long) elSize, |
| 2488 | (double)nRows*nCols*elSize, |
| 2489 | (double)(nRows+DEFAULT_BUFFER_SIZE)*nCols*elSize); |
| 2490 | exit(1); |
| 2491 | } |
| 2492 | |
| 2493 | /* |
| 2494 | * valueDimensions data is stored in array format and must be |
| 2495 | * adjusted after reallocation (see also rt_FixupLogVar()) |
| 2496 | * |
| 2497 | * Example: maxRows = 4; nRows = 4; nDims = 3; |
| 2498 | * Before realloc of the logVar, the locations of data are as below: |
| 2499 | * (x, y, z -- useful data / o -- junk, don't care) |
| 2500 | * a[0] = x a[4] = y a[8] = z |
| 2501 | * a[1] = x a[5] = y a[9] = z |
| 2502 | * a[2] = x a[6] = y a[10]= z |
| 2503 | * a[3] = x a[7] = y a[11]= z |
| 2504 | * |
| 2505 | * After realloc of the logVar (suppose 2 extra rows are added), |
| 2506 | * the locations of data are as below: |
| 2507 | * a[0] = x a[6] = y a[12]= o |
| 2508 | * a[1] = x a[7] = y a[13]= o |
| 2509 | * a[2] = x a[8] = z a[14]= o |
| 2510 | * a[3] = x a[9] = z a[15]= o |
| 2511 | * a[4] = y a[10]= z a[16]= o |
| 2512 | * a[5] = y a[11]= z a[17]= o |
| 2513 | * |
| 2514 | * The data must be adjusted as below: |
| 2515 | * a[0] = x a[6] = y a[12]= z |
| 2516 | * a[1] = x a[7] = y a[13]= z |
| 2517 | * a[2] = x a[8] = y a[14]= z |
| 2518 | * a[3] = x a[9] = y a[15]= z |
| 2519 | * a[4] = o a[10]= o a[16]= o |
| 2520 | * a[5] = o a[11]= o a[17]= o |
| 2521 | */ |
| 2522 | for(k = var->data.nDims-1; k > 0; k--){ |
| 2523 | (void) memcpy((real_T*)tmp + k*nRows, |
| 2524 | (real_T*)tmp + k*var->valDims->nRows, |
| 2525 | elSize * var->valDims->nRows); |
| 2526 | } |
| 2527 | |
| 2528 | var->valDims->dimsData = tmp; |
| 2529 | var->valDims->nRows = nRows; |
| 2530 | } |
| 2531 | |
| 2532 | } /* end rt_ReallocLogVar */ |
| 2533 | |
| 2534 | const char_T *rt_UpdateLogVarWithDiscontiguousData(LogVar *var, |
| 2535 | int8_T** data, |
| 2536 | const int_T *segmentLengths, |
| 2537 | int_T nSegments, |
| 2538 | RTWPreprocessingFcnPtr *preprocessingPtrs); |
| 2539 | |
| 2540 | /* Function: rt_UpdateLogVarWithDiscontinuousData ============================== |
| 2541 | * Abstract: |
| 2542 | * Log one row of the LogVar with data that is not contiguous. |
| 2543 | */ |
| 2544 | const char_T *rt_UpdateLogVarWithDiscontiguousData(LogVar *var, |
| 2545 | int8_T** data, |
| 2546 | const int_T *segmentLengths, |
| 2547 | int_T nSegments, |
| 2548 | RTWPreprocessingFcnPtr *preprocessingPtrs) |
| 2549 | { |
| 2550 | size_t elSize = 0; |
| 2551 | size_t offset = 0; |
| 2552 | int segIdx = 0; |
| 2553 | |
| 2554 | if (++var->numHits % var->decimation) return(NULL); |
| 2555 | var->numHits = 0; |
| 2556 | |
| 2557 | /* |
| 2558 | * Reallocate or wrap the LogVar |
| 2559 | */ |
| 2560 | if (var->rowIdx == var->data.nRows) { |
| 2561 | if (var->okayToRealloc == 1) { |
| 2562 | rt_ReallocLogVar(var, false); |
| 2563 | } else { |
| 2564 | /* Circular buffer */ |
| 2565 | var->rowIdx = 0; |
| 2566 | ++(var->wrapped); /* increment the wrap around counter */ |
| 2567 | } |
| 2568 | } |
| 2569 | |
| 2570 | /* This function is only used to log states, there's no var-dims issue. */ |
| 2571 | elSize = var->data.elSize; |
| 2572 | offset = (size_t)(elSize * var->rowIdx * var->data.nCols); |
| 2573 | |
| 2574 | if (var->data.complex) { |
| 2575 | char_T *dstRe = (char_T*)(var->data.re) + offset; |
| 2576 | char_T *dstIm = (char_T*)(var->data.im) + offset; |
| 2577 | |
| 2578 | for (segIdx = 0; segIdx < nSegments; segIdx++) { |
| 2579 | int_T nEl = segmentLengths[segIdx]; |
| 2580 | char_T *src = (char_T *)data[segIdx]; |
| 2581 | int_T el; |
| 2582 | |
| 2583 | /* preprocess data in-place before logging */ |
| 2584 | RTWPreprocessingFcnPtr preprocessingPtr = preprocessingPtrs[segIdx]; |
| 2585 | if (preprocessingPtr != NULL) { |
| 2586 | src = malloc(elSize * nEl * 2); |
| 2587 | preprocessingPtr(src, (void *)data[segIdx]); |
| 2588 | } |
| 2589 | |
| 2590 | if (src == NULL) { |
| 2591 | const char_T *errorMessage = "Could not allocate memory for logging."; |
| 2592 | fprintf(stderr,"%s.\n", errorMessage); |
| 2593 | return(errorMessage); |
| 2594 | } |
| 2595 | else { |
| 2596 | for (el = 0; el < nEl; el++) { |
| 2597 | (void)memcpy(dstRe, src, elSize); |
| 2598 | dstRe += elSize; src += elSize; |
| 2599 | (void)memcpy(dstIm, src, elSize); |
| 2600 | dstIm += elSize; src += elSize; |
| 2601 | } |
| 2602 | } |
| 2603 | |
| 2604 | /* free temporarily declared data */ |
| 2605 | if (preprocessingPtr != NULL) { |
| 2606 | free( src ); |
| 2607 | } |
| 2608 | } |
| 2609 | } else { |
| 2610 | char_T *dst = (char_T*)(var->data.re) + offset; |
| 2611 | |
| 2612 | for (segIdx = 0; segIdx < nSegments; segIdx++) { |
| 2613 | size_t segSize = elSize*segmentLengths[segIdx]; |
| 2614 | char_T *src = (void *) data[segIdx]; |
| 2615 | |
| 2616 | /* preprocess data in-place before logging */ |
| 2617 | RTWPreprocessingFcnPtr preprocessingPtr = preprocessingPtrs[segIdx]; |
| 2618 | if (preprocessingPtr != NULL) { |
| 2619 | src = malloc(segSize); |
| 2620 | preprocessingPtr(src, data[segIdx]); |
| 2621 | } |
| 2622 | if (src == NULL) { |
| 2623 | const char_T *errorMessage = "Could not allocate memory for logging."; |
| 2624 | fprintf(stderr,"%s.\n", errorMessage); |
| 2625 | return(errorMessage); } |
| 2626 | else { |
| 2627 | (void)memcpy(dst, src, segSize); |
| 2628 | dst += segSize; |
| 2629 | } |
| 2630 | |
| 2631 | /* free temporarily declared data */ |
| 2632 | if (preprocessingPtr != NULL) { |
| 2633 | free( src ); |
| 2634 | } |
| 2635 | } |
| 2636 | } |
| 2637 | |
| 2638 | ++var->rowIdx; |
| 2639 | return(NULL); |
| 2640 | |
| 2641 | } /* end rt_UpdateLogVarWithDiscontinuousData */ |
| 2642 | |
| 2643 | |
| 2644 | /*==================* |
| 2645 | * Visible routines * |
| 2646 | *==================*/ |
| 2647 | |
| 2648 | |
| 2649 | |
| 2650 | #ifdef __cplusplus |
| 2651 | extern "C" { |
| 2652 | #endif |
| 2653 | |
| 2654 | |
| 2655 | /* Function: rt_CreateLogVarWithConvert ======================================== |
| 2656 | * Abstract: |
| 2657 | * Create a logging variable. |
| 2658 | * |
| 2659 | * Returns: |
| 2660 | * ~= NULL => success, returns the log variable created. |
| 2661 | * == NULL => failure, error message set in the simstruct. |
| 2662 | */ |
| 2663 | LogVar *rt_CreateLogVarWithConvert( |
| 2664 | RTWLogInfo *li, |
| 2665 | const real_T startTime, |
| 2666 | const real_T finalTime, |
| 2667 | const real_T inStepSize, |
| 2668 | const char_T **errStatus, |
| 2669 | const char_T *varName, |
| 2670 | BuiltInDTypeId inpDataTypeID, |
| 2671 | const RTWLogDataTypeConvert *pDataTypeConvertInfo, |
| 2672 | int_T logical, |
| 2673 | int_T complex, |
| 2674 | int_T frameData, |
| 2675 | int_T nCols, |
| 2676 | int_T nDims, |
| 2677 | const int_T *dims, |
| 2678 | LogValDimsStat logValDimsStat, |
| 2679 | void **currSigDims, |
| 2680 | int_T *currSigDimsSize, |
| 2681 | int_T maxRows, |
| 2682 | int_T decimation, |
| 2683 | real_T sampleTime, |
| 2684 | int_T appendToLogVarsList) |
| 2685 | { |
| 2686 | int_T usingDefaultBufSize = 0; |
| 2687 | #ifdef NO_LOGGING_REALLOC |
| 2688 | int_T okayToRealloc = 0; |
| 2689 | #else |
| 2690 | int_T okayToRealloc = 1; |
| 2691 | #endif |
| 2692 | LogVar *var = NULL; |
| 2693 | /*inpDataTypeID is the rt_LoggedOutputDataTypeId*/ |
| 2694 | BuiltInDTypeId dTypeID = (BuiltInDTypeId)inpDataTypeID; |
| 2695 | size_t elementSize = rt_GetSizeofDataType(dTypeID); |
| 2696 | int_T frameSize; |
| 2697 | int_T nRows; |
| 2698 | int_T nColumns; |
| 2699 | |
| 2700 | /*===================================================================* |
| 2701 | * Determine the frame size if the data is frame based * |
| 2702 | *===================================================================*/ |
| 2703 | frameSize = frameData ? dims[0] : 1; |
| 2704 | |
| 2705 | /*===================================================================* |
| 2706 | * Calculate maximum number of rows needed in the buffer * |
| 2707 | *===================================================================*/ |
| 2708 | |
| 2709 | if (finalTime > startTime && finalTime != rtInf) { |
| 2710 | real_T nPoints; /* Tfinal is finite ===> nRows can be */ |
| 2711 | real_T stepSize; /* computed since the StepSize is fixed */ |
| 2712 | |
| 2713 | if (sampleTime == -2.0) { /* The signal being logged is constant, * |
| 2714 | * Hence, only one data point is logged. */ |
| 2715 | stepSize = finalTime; |
| 2716 | } else if (sampleTime == -1.0 || sampleTime == 0.0) { |
| 2717 | /* Signal being logged is either inside a * |
| 2718 | * triggered sub-system or it is continuous. */ |
| 2719 | stepSize = inStepSize; |
| 2720 | } else { /* Discrete signal */ |
| 2721 | stepSize = sampleTime; |
| 2722 | } |
| 2723 | |
| 2724 | if (stepSize == 0.0) { |
| 2725 | /* small initial value, so as to exercise the realloc code */ |
| 2726 | nRows = maxRows+1; |
| 2727 | okayToRealloc = 1; |
| 2728 | } else { |
| 2729 | nPoints = 1.0 + floor((finalTime-startTime)/stepSize); |
| 2730 | |
| 2731 | /* |
| 2732 | * Add one more data point if needed. |
| 2733 | */ |
| 2734 | if ( stepSize*(nPoints-1.0) < (finalTime-startTime) ) { |
| 2735 | nPoints += 1.0; |
| 2736 | } |
| 2737 | |
| 2738 | /* |
| 2739 | * Actual number of points to log = nPoints * size of |
| 2740 | * each frame if data is frame-based |
| 2741 | */ |
| 2742 | nPoints = frameData ? (nPoints * frameSize) : nPoints; |
| 2743 | |
| 2744 | nPoints /= decimation; |
| 2745 | if (nPoints != floor(nPoints)) { |
| 2746 | nPoints += 1.0; |
| 2747 | } |
| 2748 | nRows = (nPoints <= INT_MAX) ? ((int_T) nPoints) : INT_MAX; |
| 2749 | } |
| 2750 | /* |
| 2751 | * If maxRows is specified, and if this number is less |
| 2752 | * than the number we computed (nRows) then use maxRows. |
| 2753 | */ |
| 2754 | if ((maxRows > 0) && (maxRows < nRows)) { |
| 2755 | nRows = maxRows; |
| 2756 | okayToRealloc = 0; |
| 2757 | } |
| 2758 | } else if (finalTime == startTime) { |
| 2759 | /* |
| 2760 | * Number of rows to log is equal to 1 if not frame-based and |
| 2761 | * equal to frame size if frame-based |
| 2762 | */ |
| 2763 | nRows = frameData ? frameSize : 1; |
| 2764 | |
| 2765 | /* |
| 2766 | * If maxRows is specified, and if this number is less |
| 2767 | * than the number we computed (nRows) then use maxRows. |
| 2768 | */ |
| 2769 | if ((maxRows > 0) && (maxRows < nRows)) { |
| 2770 | nRows = maxRows; |
| 2771 | okayToRealloc = 0; |
| 2772 | } |
| 2773 | } else if (maxRows > 0) { /* maxRows is specified => nRows=maxRows */ |
| 2774 | nRows = maxRows; |
| 2775 | okayToRealloc = 0; |
| 2776 | } else { |
| 2777 | |
| 2778 | if (inStepSize == 0) { |
| 2779 | /* small initial value, so as to exercise the realloc code */ |
| 2780 | nRows = maxRows+1; |
| 2781 | okayToRealloc = 1; |
| 2782 | } else { /* Use a default value for nRows */ |
| 2783 | usingDefaultBufSize = 1; |
| 2784 | nRows = DEFAULT_BUFFER_SIZE; |
| 2785 | okayToRealloc = 0; /* No realloc with infinite stop time */ |
| 2786 | (void)fprintf(stdout, "*** Using a default buffer of size %d for " |
| 2787 | "logging variable %s\n", nRows, varName); |
| 2788 | } |
| 2789 | } |
| 2790 | |
| 2791 | /* |
| 2792 | * Figure out the number of columns that the log variable should have. |
| 2793 | * If the data is not frame based, then number of columns should equal |
| 2794 | * nCols that is provided as input to the function. If the data is |
| 2795 | * frame-based, then the number of columns should be equal to the |
| 2796 | * number of channels = nCols/frameSize = dims[1]; |
| 2797 | */ |
| 2798 | nColumns = frameData ? dims[1] : nCols; |
| 2799 | |
| 2800 | /* |
| 2801 | * Error out if the size of the circular buffer is absurdly large, this |
| 2802 | * error message is more informative than the one we get when we try to |
| 2803 | * malloc this many number of bytes in one fell swoop. |
| 2804 | */ |
| 2805 | { |
| 2806 | double tmpDbl = ((double)elementSize)*((double)nRows)* |
| 2807 | ((double)nColumns); |
| 2808 | |
| 2809 | if (tmpDbl >= UINT_MAX) { |
| 2810 | (void)fprintf(stderr, |
| 2811 | "\n*** Memory required to log variable '%s' is too" |
| 2812 | "\n big. Use the 'Limit rows to last:' and (or)" |
| 2813 | "\n 'Decimation:' options to reduce the required" |
| 2814 | "\n memory size.\n", varName); |
| 2815 | (void)fprintf(stderr, "*** Details:\n" |
| 2816 | " varName = %s\n" |
| 2817 | " nRows = %d\n" |
| 2818 | " nCols = %d\n" |
| 2819 | " elementSize = %lu\n" |
| 2820 | " Bytes Required = %.16g\n\n", |
| 2821 | varName, nRows, nColumns, (unsigned long) |
| 2822 | elementSize, tmpDbl); |
| 2823 | goto ERROR_EXIT; |
| 2824 | } |
| 2825 | } |
| 2826 | |
| 2827 | /* Allocate memory for the log variable */ |
| 2828 | if ( (var = calloc(1, sizeof(LogVar))) == NULL ) { |
| 2829 | (void)fprintf(stderr, "*** Error allocating memory for logging %s\n", |
| 2830 | varName); |
| 2831 | goto ERROR_EXIT; |
| 2832 | } |
| 2833 | |
| 2834 | /* Allocate memory for the circular buffer (real part) */ |
| 2835 | if ( (var->data.re = malloc(nRows*nColumns*elementSize)) == NULL ) { |
| 2836 | (void)fprintf(stderr, |
| 2837 | "*** Error allocating memory for the circular buffer\n"); |
| 2838 | (void)fprintf(stderr, "*** Details:\n" |
| 2839 | " varName = %s\n" |
| 2840 | " nRows = %d\n" |
| 2841 | " nCols = %d\n" |
| 2842 | " elementSize = %lu\n" |
| 2843 | " Bytes Requested = %.16g\n\n", |
| 2844 | varName, nRows, nColumns, (unsigned long) elementSize, |
| 2845 | ((double)elementSize)*((double)nRows)*((double)nColumns)); |
| 2846 | goto ERROR_EXIT; |
| 2847 | } |
| 2848 | |
| 2849 | /* Allocate memory for the circular buffer for the imaginary part */ |
| 2850 | if (complex) { |
| 2851 | if ( (var->data.im = malloc(nRows*nColumns*elementSize)) == NULL ) { |
| 2852 | (void)fprintf(stderr, |
| 2853 | "*** Error allocating memory for the circular buffer " |
| 2854 | "for logging the imaginary part of %s\n", varName); |
| 2855 | (void)fprintf(stderr, "*** Details:\n" |
| 2856 | " varName = %s\n" |
| 2857 | " nRows = %d\n" |
| 2858 | " nCols = %d\n" |
| 2859 | " elementSize = %lu\n" |
| 2860 | " Bytes Requested = %.16g\n\n", |
| 2861 | varName, nRows, nColumns, (unsigned long) elementSize, |
| 2862 | ((double)elementSize)*((double)nRows)* |
| 2863 | ((double)nColumns)); |
| 2864 | goto ERROR_EXIT; |
| 2865 | } |
| 2866 | } |
| 2867 | /* |
| 2868 | * Initialize the fields in LogVar structure. |
| 2869 | */ |
| 2870 | if (appendToLogVarsList) { |
| 2871 | rt_LoadModifiedLogVarName(li,varName,var->data.name); |
| 2872 | } else { |
| 2873 | var->data.name[mxMAXNAM-1] = '\0'; |
| 2874 | (void)strncpy(var->data.name,varName,mxMAXNAM-1); |
| 2875 | } |
| 2876 | var->data.nCols = nColumns; |
| 2877 | var->data.nRows = nRows; |
| 2878 | |
| 2879 | var->data.nDims = frameData ? 1 : nDims; |
| 2880 | if (var->data.nDims > 2) { |
| 2881 | var->data.dims = (int_T*)malloc(sizeof(int_T)*var->data.nDims); |
| 2882 | } else { |
| 2883 | var->data.dims = var->data._dims; |
| 2884 | } |
| 2885 | if (frameData) { |
| 2886 | var->data.dims[0] = nColumns; |
| 2887 | } else { |
| 2888 | /*LINTED E_CAST_INT_TO_SMALL_INT*/ |
| 2889 | (void)memcpy(var->data.dims, dims, (size_t)(nDims*sizeof(int_T))); |
| 2890 | } |
| 2891 | |
| 2892 | var->data.dTypeID = dTypeID; |
| 2893 | var->data.elSize = elementSize; |
| 2894 | |
| 2895 | var->data.dataTypeConvertInfo = rt_GetDataTypeConvertInfo( |
| 2896 | pDataTypeConvertInfo, dTypeID); |
| 2897 | |
| 2898 | var->data.mxID = rt_GetMxIdFromDTypeId(dTypeID); |
| 2899 | /* over-ride logical bit if data type is boolean */ |
| 2900 | logical = dTypeID == SS_BOOLEAN ? 1 : 0; |
| 2901 | var->data.logical = (logical) ? matLOGICAL_BIT : 0x0; |
| 2902 | var->data.complex = (complex) ? matCOMPLEX_BIT : 0x0; |
| 2903 | var->data.frameData = frameData; |
| 2904 | var->data.frameSize = (frameData) ? frameSize : 1; |
| 2905 | |
| 2906 | /* fill up valDims field */ |
| 2907 | if(logValDimsStat == NO_LOGVALDIMS){ |
| 2908 | /* All signals are fixed-size, no need to log valueDimensions field */ |
| 2909 | var->valDims = NULL; |
| 2910 | /* Set these pointers to NULLs in this case */ |
| 2911 | var->coords = NULL; |
| 2912 | var->strides = NULL; |
| 2913 | var->currStrides = NULL; |
| 2914 | } |
| 2915 | else{ |
| 2916 | if ( (var->valDims = calloc(1, sizeof(ValDimsData))) == NULL ) { |
| 2917 | goto ERROR_EXIT; |
| 2918 | } |
| 2919 | |
| 2920 | (void)memcpy(var->valDims->name, &VALUEDIMENSIONS_FIELD_NAME, mxMAXNAM); |
| 2921 | |
| 2922 | if (logValDimsStat == LOGVALDIMS_EMPTYMX) { |
| 2923 | /* At least one signal is variable-size, |
| 2924 | but the current signal is fixed-size. |
| 2925 | Therefore, create a dummy MatrixData to write out valueDimensions |
| 2926 | as an empty matrix. |
| 2927 | */ |
| 2928 | var->valDims->nRows = 0; |
| 2929 | var->valDims->nCols = 0; |
| 2930 | var->valDims->currSigDims = NULL; |
| 2931 | var->valDims->currSigDimsSize = NULL; |
| 2932 | var->valDims->dimsData = NULL; |
| 2933 | /* Set these pointers to NULLs in this case */ |
| 2934 | var->coords = NULL; |
| 2935 | var->strides = NULL; |
| 2936 | var->currStrides = NULL; |
| 2937 | } else { /* The current signal is a variable-size signal. */ |
| 2938 | /* The "valueDimensions" must be double, so re-assign element size */ |
| 2939 | elementSize = sizeof(real_T); |
| 2940 | |
| 2941 | /* When signals are frame-based, 'valueDimensions' has 1 column */ |
| 2942 | if(frameData){ |
| 2943 | /* When signal is frame-based, the first dimension is always fixed, |
| 2944 | so we only need to record the second dimension. |
| 2945 | e.g. Two frame-based signals [10x4] and [10x3], |
| 2946 | 'valueDimensions' and 'currSigDims' |
| 2947 | only record 4 or 3. |
| 2948 | */ |
| 2949 | nColumns = 1; |
| 2950 | var->valDims->currSigDims = (void**) (currSigDims + 1); |
| 2951 | var->valDims->currSigDimsSize = (int_T*) (currSigDimsSize + 1); |
| 2952 | } else { /* non-frame based */ |
| 2953 | nColumns = nDims; |
| 2954 | var->valDims->currSigDims = (void**) currSigDims; |
| 2955 | var->valDims->currSigDimsSize = (int_T*) currSigDimsSize; |
| 2956 | } |
| 2957 | |
| 2958 | /* Allocate memory for the circular buffer */ |
| 2959 | if ( (var->valDims->dimsData = malloc(nRows*nColumns*elementSize)) == NULL ) { |
| 2960 | (void)fprintf(stderr, |
| 2961 | "*** Error allocating memory for the circular buffer\n"); |
| 2962 | (void)fprintf(stderr, "*** Details:\n" |
| 2963 | " varName = %s\n" |
| 2964 | " nRows = %d\n" |
| 2965 | " nCols = %d\n" |
| 2966 | " elementSize = %lu\n" |
| 2967 | " Bytes Requested = %.16g\n\n", |
| 2968 | var->valDims->name, nRows, nColumns, (unsigned long) elementSize, |
| 2969 | ((double)elementSize)*((double)nRows)*((double)nColumns)); |
| 2970 | goto ERROR_EXIT; |
| 2971 | } |
| 2972 | var->valDims->nRows = nRows; |
| 2973 | var->valDims->nCols = nColumns; |
| 2974 | |
| 2975 | /* Allocate memory for these dynamic arrays */ |
| 2976 | { |
| 2977 | size_t nbytes = var->data.nDims*sizeof(int_T); |
| 2978 | if( ((var->coords = calloc(nbytes, 1)) == NULL) |
| 2979 | ||((var->strides = calloc(nbytes, 1)) == NULL) |
| 2980 | ||((var->currStrides = calloc(nbytes, 1)) == NULL) ) |
| 2981 | goto ERROR_EXIT; |
| 2982 | } |
| 2983 | } |
| 2984 | } |
| 2985 | |
| 2986 | var->rowIdx = 0; |
| 2987 | var->wrapped = 0; |
| 2988 | var->nDataPoints = 0; |
| 2989 | var->usingDefaultBufSize = usingDefaultBufSize; |
| 2990 | var->okayToRealloc = okayToRealloc; |
| 2991 | var->decimation = decimation; |
| 2992 | var->numHits = -1; /* so first point gets logged */ |
| 2993 | |
| 2994 | /* Add this log var to list in log info, if necessary */ |
| 2995 | if (appendToLogVarsList) { |
| 2996 | LogInfo *logInfo = (LogInfo*) rtliGetLogInfo(li); |
| 2997 | LogVar *varList = logInfo->logVarsList; |
| 2998 | |
| 2999 | if (varList != NULL) { |
| 3000 | while (varList->next != NULL) { |
| 3001 | varList = varList->next; |
| 3002 | } |
| 3003 | varList->next = var; |
| 3004 | } else { |
| 3005 | logInfo->logVarsList = var; |
| 3006 | } |
| 3007 | } |
| 3008 | |
| 3009 | return(var); /* NORMAL_EXIT */ |
| 3010 | |
| 3011 | ERROR_EXIT: |
| 3012 | |
| 3013 | *errStatus = rtMemAllocError; |
| 3014 | rt_DestroyLogVar(var); |
| 3015 | return(NULL); |
| 3016 | |
| 3017 | } /* end rt_CreateLogVarWithConvert */ |
| 3018 | |
| 3019 | |
| 3020 | #ifdef __cplusplus |
| 3021 | } |
| 3022 | #endif |
| 3023 | |
| 3024 | |
| 3025 | |
| 3026 | |
| 3027 | #ifdef __cplusplus |
| 3028 | extern "C" { |
| 3029 | #endif |
| 3030 | |
| 3031 | |
| 3032 | /* Function: rt_CreateLogVar =================================================== |
| 3033 | * Abstract: |
| 3034 | * Create a logging variable. |
| 3035 | * |
| 3036 | * Returns: |
| 3037 | * ~= NULL => success, returns the log variable created. |
| 3038 | * == NULL => failure, error message set in the simstruct. |
| 3039 | */ |
| 3040 | LogVar *rt_CreateLogVar(RTWLogInfo *li, |
| 3041 | const real_T startTime, |
| 3042 | const real_T finalTime, |
| 3043 | const real_T inStepSize, |
| 3044 | const char_T **errStatus, |
| 3045 | const char_T *varName, |
| 3046 | BuiltInDTypeId inpDataTypeID, |
| 3047 | int_T logical, |
| 3048 | int_T complex, |
| 3049 | int_T frameData, |
| 3050 | int_T nCols, |
| 3051 | int_T nDims, |
| 3052 | const int_T *dims, |
| 3053 | LogValDimsStat logValDimsStat, |
| 3054 | void **currSigDims, |
| 3055 | int_T *currSigDimsSize, |
| 3056 | int_T maxRows, |
| 3057 | int_T decimation, |
| 3058 | real_T sampleTime, |
| 3059 | int_T appendToLogVarsList) |
| 3060 | { |
| 3061 | const RTWLogDataTypeConvert *pDataTypeConvertInfo = NULL; |
| 3062 | |
| 3063 | return rt_CreateLogVarWithConvert(li, |
| 3064 | startTime, |
| 3065 | finalTime, |
| 3066 | inStepSize, |
| 3067 | errStatus, |
| 3068 | varName, |
| 3069 | inpDataTypeID, |
| 3070 | pDataTypeConvertInfo, |
| 3071 | logical, |
| 3072 | complex, |
| 3073 | frameData, |
| 3074 | nCols, |
| 3075 | nDims, |
| 3076 | dims, |
| 3077 | logValDimsStat, |
| 3078 | currSigDims, |
| 3079 | currSigDimsSize, |
| 3080 | maxRows, |
| 3081 | decimation, |
| 3082 | sampleTime, |
| 3083 | appendToLogVarsList); |
| 3084 | |
| 3085 | } /* end rt_CreateLogVar */ |
| 3086 | |
| 3087 | |
| 3088 | #ifdef __cplusplus |
| 3089 | } |
| 3090 | #endif |
| 3091 | |
| 3092 | |
| 3093 | |
| 3094 | |
| 3095 | #ifdef __cplusplus |
| 3096 | extern "C" { |
| 3097 | #endif |
| 3098 | |
| 3099 | |
| 3100 | /* Function: rt_CreateStructLogVar ============================================= |
| 3101 | * Abstract: |
| 3102 | * Create a logging variable in the structure format. |
| 3103 | * |
| 3104 | * Returns: |
| 3105 | * ~= NULL => success, returns the log variable created. |
| 3106 | * == NULL => failure, error message set in the simstruct. |
| 3107 | */ |
| 3108 | StructLogVar *rt_CreateStructLogVar(RTWLogInfo *li, |
| 3109 | const real_T startTime, |
| 3110 | const real_T finalTime, |
| 3111 | const real_T inStepSize, |
| 3112 | const char_T **errStatus, |
| 3113 | const char_T *varName, |
| 3114 | boolean_T logTime, |
| 3115 | int_T maxRows, |
| 3116 | int_T decimation, |
| 3117 | real_T sampleTime, |
| 3118 | const RTWLogSignalInfo *sigInfo, |
| 3119 | const char_T *blockName) |
| 3120 | { |
| 3121 | |
| 3122 | return( local_CreateStructLogVar(li, |
| 3123 | startTime, |
| 3124 | finalTime, |
| 3125 | inStepSize, |
| 3126 | errStatus, |
| 3127 | varName, |
| 3128 | logTime, |
| 3129 | maxRows, |
| 3130 | decimation, |
| 3131 | sampleTime, |
| 3132 | sigInfo, |
| 3133 | blockName)); |
| 3134 | |
| 3135 | } /* end rt_CreateStructLogVar */ |
| 3136 | |
| 3137 | |
| 3138 | #ifdef __cplusplus |
| 3139 | } |
| 3140 | #endif |
| 3141 | |
| 3142 | |
| 3143 | |
| 3144 | |
| 3145 | #ifdef __cplusplus |
| 3146 | extern "C" { |
| 3147 | #endif |
| 3148 | |
| 3149 | |
| 3150 | /* Function: rt_StartDataLoggingWithStartTime ================================== |
| 3151 | * Abstract: |
| 3152 | * Initialize data logging info based upon the following settings cached |
| 3153 | * in the RTWLogging data structure of the SimStruct. |
| 3154 | * |
| 3155 | * Return value is: |
| 3156 | * == NULL => success |
| 3157 | * != NULL => failure (the return value is a pointer that points to the |
| 3158 | * error message, which is also set in the simstruct) |
| 3159 | */ |
| 3160 | const char_T *rt_StartDataLoggingWithStartTime(RTWLogInfo *li, |
| 3161 | const real_T startTime, |
| 3162 | const real_T finalTime, |
| 3163 | const real_T stepSize, |
| 3164 | const char_T **errStatus) |
| 3165 | { |
| 3166 | const char_T *varName; |
| 3167 | LogInfo *logInfo; |
| 3168 | real_T sampleTime = stepSize; |
| 3169 | int_T maxRows = rtliGetLogMaxRows(li); |
| 3170 | int_T decimation = rtliGetLogDecimation(li); |
| 3171 | int_T logFormat = rtliGetLogFormat(li); |
| 3172 | boolean_T logTime = (logFormat==2) ? 1 : 0; |
| 3173 | |
| 3174 | /* reset error status */ |
| 3175 | *errStatus = NULL; |
| 3176 | |
| 3177 | if ((logInfo=calloc(1,sizeof(LogInfo))) == NULL) { |
| 3178 | *errStatus = rtMemAllocError; |
| 3179 | goto ERROR_EXIT; |
| 3180 | } |
| 3181 | rtliSetLogInfo(li, (void*)logInfo); |
| 3182 | |
| 3183 | /* time */ |
| 3184 | varName = rtliGetLogT(li); |
| 3185 | if (varName[0] != '\0') { |
| 3186 | int_T dims = 1; |
| 3187 | logInfo->t = rt_CreateLogVarWithConvert(li, startTime, finalTime, |
| 3188 | stepSize, errStatus, |
| 3189 | varName,SS_DOUBLE, |
| 3190 | NULL, |
| 3191 | 0,0,0,1,1, |
| 3192 | &dims, NO_LOGVALDIMS, NULL, NULL, |
| 3193 | maxRows,decimation, |
| 3194 | sampleTime,1); |
| 3195 | if (logInfo->t == NULL) goto ERROR_EXIT; |
| 3196 | } |
| 3197 | |
| 3198 | /* states */ |
| 3199 | if ( rtliGetLogX(li)[0] != '\0' || rtliGetLogXFinal(li)[0] != '\0' ) { |
| 3200 | const RTWLogSignalInfo *xInfo = rtliGetLogXSignalInfo(li); |
| 3201 | |
| 3202 | if (logFormat == 0) { /* Matrix Format */ |
| 3203 | int numCols; |
| 3204 | int nDims; |
| 3205 | const int *dims; |
| 3206 | BuiltInDTypeId dataType; |
| 3207 | int isComplex; |
| 3208 | int_T sIdx; |
| 3209 | |
| 3210 | const RTWLogDataTypeConvert *pDTConvInfo; |
| 3211 | |
| 3212 | numCols = xInfo[0].numCols ? xInfo[0].numCols[0] : 0; |
| 3213 | for (sIdx = 1; sIdx < xInfo[0].numSignals; sIdx++) { |
| 3214 | numCols += xInfo[0].numCols[sIdx]; |
| 3215 | } |
| 3216 | /* If we have only one "matrix" state, we can log as a matrix */ |
| 3217 | if (xInfo[0].numSignals == 1) { |
| 3218 | nDims = xInfo[0].numDims ? xInfo[0].numDims[0] : 1; |
| 3219 | dims = xInfo[0].dims; |
| 3220 | } else { |
| 3221 | nDims = 1; |
| 3222 | dims = &numCols; |
| 3223 | } |
| 3224 | dataType = xInfo[0].dataTypes ? xInfo[0].dataTypes[0] : 0; |
| 3225 | isComplex = xInfo[0].complexSignals ? xInfo[0].complexSignals[0] : 0; |
| 3226 | |
| 3227 | pDTConvInfo = xInfo[0].dataTypeConvert; |
| 3228 | |
| 3229 | if (rtliGetLogX(li)[0] != '\0') { |
| 3230 | logInfo->x = rt_CreateLogVarWithConvert(li, startTime, finalTime, |
| 3231 | stepSize, errStatus, |
| 3232 | rtliGetLogX(li),dataType, |
| 3233 | pDTConvInfo, |
| 3234 | 0, |
| 3235 | isComplex,0,numCols,nDims,dims, |
| 3236 | NO_LOGVALDIMS, NULL, NULL, |
| 3237 | maxRows,decimation,sampleTime,1); |
| 3238 | if (logInfo->x == NULL) goto ERROR_EXIT; |
| 3239 | } |
| 3240 | if (rtliGetLogXFinal(li)[0] != '\0') { |
| 3241 | logInfo->xFinal = rt_CreateLogVarWithConvert(li, startTime, finalTime, |
| 3242 | stepSize, errStatus, |
| 3243 | rtliGetLogXFinal(li),dataType, |
| 3244 | pDTConvInfo, |
| 3245 | 0,isComplex,0,numCols,nDims, |
| 3246 | dims, NO_LOGVALDIMS, NULL, |
| 3247 | NULL, 1,decimation, |
| 3248 | sampleTime,1); |
| 3249 | if (logInfo->xFinal == NULL) goto ERROR_EXIT; |
| 3250 | } |
| 3251 | } else { /* Structure Format */ |
| 3252 | if (rtliGetLogX(li)[0] != '\0') { |
| 3253 | logInfo->x = local_CreateStructLogVar(li, startTime, finalTime, |
| 3254 | stepSize, errStatus, |
| 3255 | rtliGetLogX(li), logTime, |
| 3256 | maxRows, decimation, |
| 3257 | sampleTime, xInfo, NULL); |
| 3258 | if (logInfo->x == NULL) goto ERROR_EXIT; |
| 3259 | } |
| 3260 | if (rtliGetLogXFinal(li)[0] != '\0') { |
| 3261 | logInfo->xFinal = local_CreateStructLogVar(li, startTime, finalTime, |
| 3262 | stepSize, errStatus, |
| 3263 | rtliGetLogXFinal(li), |
| 3264 | logTime,1,decimation, |
| 3265 | sampleTime,xInfo,NULL); |
| 3266 | if (logInfo->xFinal == NULL) goto ERROR_EXIT; |
| 3267 | } |
| 3268 | } |
| 3269 | } |
| 3270 | |
| 3271 | /* outputs */ |
| 3272 | *errStatus = rt_StartDataLoggingForOutput(li,startTime,finalTime, |
| 3273 | stepSize,errStatus); |
| 3274 | if (*errStatus != NULL) goto ERROR_EXIT; |
| 3275 | |
| 3276 | return(NULL); /* NORMAL_EXIT */ |
| 3277 | |
| 3278 | ERROR_EXIT: |
| 3279 | (void)fprintf(stderr, "*** Errors occurred when starting data logging.\n"); |
| 3280 | if (*errStatus == NULL) { |
| 3281 | *errStatus = rtMemAllocError; |
| 3282 | } |
| 3283 | if (logInfo) { |
| 3284 | rt_DestroyLogVar(logInfo->logVarsList); |
| 3285 | logInfo->logVarsList = NULL; |
| 3286 | rt_DestroyStructLogVar(logInfo->structLogVarsList); |
| 3287 | logInfo->structLogVarsList = NULL; |
| 3288 | FREE(logInfo); |
| 3289 | rtliSetLogInfo(li,NULL); |
| 3290 | } |
| 3291 | return(*errStatus); |
| 3292 | |
| 3293 | } /* end rt_StartDataLoggingWithStartTime */ |
| 3294 | |
| 3295 | |
| 3296 | #ifdef __cplusplus |
| 3297 | } |
| 3298 | #endif |
| 3299 | |
| 3300 | |
| 3301 | |
| 3302 | |
| 3303 | #ifdef __cplusplus |
| 3304 | extern "C" { |
| 3305 | #endif |
| 3306 | |
| 3307 | |
| 3308 | /* Function: rt_StartDataLogging =============================================== |
| 3309 | * Abstract: |
| 3310 | */ |
| 3311 | const char_T *rt_StartDataLogging(RTWLogInfo *li, |
| 3312 | const real_T finalTime, |
| 3313 | const real_T stepSize, |
| 3314 | const char_T **errStatus) |
| 3315 | { |
| 3316 | return rt_StartDataLoggingWithStartTime(li, |
| 3317 | 0.0, |
| 3318 | finalTime, |
| 3319 | stepSize, |
| 3320 | errStatus); |
| 3321 | } |
| 3322 | |
| 3323 | |
| 3324 | #ifdef __cplusplus |
| 3325 | } |
| 3326 | #endif |
| 3327 | |
| 3328 | |
| 3329 | |
| 3330 | |
| 3331 | #ifdef __cplusplus |
| 3332 | extern "C" { |
| 3333 | #endif |
| 3334 | |
| 3335 | |
| 3336 | /* Function: rt_UpdateLogVar =================================================== |
| 3337 | * Abstract: |
| 3338 | * Called to log data for a log variable. |
| 3339 | */ |
| 3340 | void rt_UpdateLogVar(LogVar *var, const void *data, boolean_T isVarDims) |
| 3341 | { |
| 3342 | size_t elSize = var->data.elSize; |
| 3343 | const char_T *cData = data; |
| 3344 | const int_T frameData = var->data.frameData; |
| 3345 | const int_T frameSize = frameData ? (var->data.frameSize) : 1; |
| 3346 | const int_T logWidth = var->data.nCols; |
| 3347 | BuiltInDTypeId dTypeID = var->data.dTypeID; |
| 3348 | |
| 3349 | size_t offset = 0; |
| 3350 | char_T *currRealRow = NULL; |
| 3351 | char_T *currImagRow = NULL; |
| 3352 | int_T pointSize = (int_T)((var->data.complex) ? rt_GetSizeofComplexType(dTypeID) : elSize); |
| 3353 | |
| 3354 | int i, j, k; |
| 3355 | |
| 3356 | /* The following variables will be used for |
| 3357 | logging variable-size signals */ |
| 3358 | const int_T nDims = var->data.nDims; |
| 3359 | const int_T *dims = var->data.dims; |
| 3360 | const void * const *currDimsPtr = NULL; |
| 3361 | const int_T *currDimsSizePtr = NULL; |
| 3362 | |
| 3363 | /* The following variables will be used for |
| 3364 | logging "valueDimensions" field */ |
| 3365 | size_t offset_valDims = 0; |
| 3366 | char_T *currValDimsRow = NULL; |
| 3367 | size_t elSize_valDims = sizeof(real_T); |
| 3368 | real_T currentSigDims = 0; |
| 3369 | int_T nRows_valDims = 0; |
| 3370 | int_T logWidth_valDims = 0; |
| 3371 | |
| 3372 | for (i = 0; i < frameSize; i++) { |
| 3373 | if (++var->numHits % var->decimation) continue; |
| 3374 | var->numHits = 0; |
| 3375 | |
| 3376 | if (var->rowIdx == var->data.nRows) { |
| 3377 | if (var->okayToRealloc == 1) { |
| 3378 | rt_ReallocLogVar(var, isVarDims); |
| 3379 | } else { |
| 3380 | /* Circular buffer */ |
| 3381 | var->rowIdx = 0; |
| 3382 | ++(var->wrapped); /* increment the wrap around counter */ |
| 3383 | } |
| 3384 | } |
| 3385 | |
| 3386 | if(isVarDims){ |
| 3387 | currDimsPtr = (const void * const *) var->valDims->currSigDims; |
| 3388 | currDimsSizePtr = (const int_T*) var->valDims->currSigDimsSize; |
| 3389 | logWidth_valDims = frameData ? 1 : var->valDims->nCols; |
| 3390 | nRows_valDims = var->valDims->nRows; |
| 3391 | |
| 3392 | var->strides[0] = 1; |
| 3393 | var->currStrides[0] = 1; |
| 3394 | |
| 3395 | for (k = 1; k < nDims; k++){ |
| 3396 | int32_T currDimsVal=0; |
| 3397 | switch (currDimsSizePtr[k-1]) { |
| 3398 | case 1: |
| 3399 | currDimsVal = (**(((const uint8_T * const *) currDimsPtr)+(k-1))); |
| 3400 | break; |
| 3401 | case 2: |
| 3402 | currDimsVal = (**(((const uint16_T * const *) currDimsPtr)+(k-1))); |
| 3403 | break; |
| 3404 | case 4: |
| 3405 | currDimsVal = (**(((const uint32_T * const *) currDimsPtr)+(k-1))); |
| 3406 | break; |
| 3407 | } |
| 3408 | var->strides[k] = var->strides[k-1] * dims[k-1]; |
| 3409 | var->currStrides[k] = var->currStrides[k-1] * currDimsVal; |
| 3410 | } |
| 3411 | } |
| 3412 | |
| 3413 | offset = (size_t)(elSize * var->rowIdx * logWidth); |
| 3414 | currRealRow = ((char_T*) (var->data.re)) + offset; |
| 3415 | currImagRow = (var->data.complex) ? |
| 3416 | ((char_T*) (var->data.im)) + offset : NULL; |
| 3417 | |
| 3418 | /* update logging data */ |
| 3419 | for (j = 0; j < logWidth; j++) { |
| 3420 | |
| 3421 | boolean_T inRange = true; |
| 3422 | int idx = j; |
| 3423 | |
| 3424 | /* Check whether the currently logged value is in range or not. |
| 3425 | For fixed-size signal logging, always inRange = true; idx = j; |
| 3426 | For variable-size signal logging, use strides, coordinates |
| 3427 | and current strides to decide whether the currently logged |
| 3428 | data is in range or not and its location in the logging |
| 3429 | matrix. |
| 3430 | */ |
| 3431 | if(isVarDims){ |
| 3432 | int rem = j; |
| 3433 | idx = 0; |
| 3434 | for(k = nDims-1; k>=0; k--){ |
| 3435 | int32_T currDimsVal=0; |
| 3436 | switch (currDimsSizePtr[k]) { |
| 3437 | case 1: |
| 3438 | currDimsVal = (**(((const uint8_T * const *) currDimsPtr)+k)); |
| 3439 | break; |
| 3440 | case 2: |
| 3441 | currDimsVal = (**(((const uint16_T * const *) currDimsPtr)+k)); |
| 3442 | break; |
| 3443 | case 4: |
| 3444 | currDimsVal = (**(((const uint32_T * const *) currDimsPtr)+k)); |
| 3445 | break; |
| 3446 | } |
| 3447 | var->coords[k] = rem / var->strides[k]; |
| 3448 | if( var->coords[k] >= currDimsVal ){ |
| 3449 | inRange = false; |
| 3450 | break; |
| 3451 | } |
| 3452 | rem = rem - var->coords[k] * var->strides[k]; |
| 3453 | } |
| 3454 | if(inRange){ |
| 3455 | idx = var->coords[0]; |
| 3456 | for (k = 1; k < nDims; k++){ |
| 3457 | idx += var->coords[k] * var->currStrides[k]; |
| 3458 | } |
| 3459 | } |
| 3460 | } |
| 3461 | |
| 3462 | if (!var->data.dataTypeConvertInfo.conversionNeeded) { |
| 3463 | /* NO conversion needed |
| 3464 | */ |
| 3465 | if (inRange) { |
| 3466 | /* If in range, fill in data */ |
| 3467 | const char *cDataPoint = cData + (i+frameSize*idx) * pointSize; |
| 3468 | |
| 3469 | (void) memcpy(currRealRow, cDataPoint, elSize); |
| 3470 | currRealRow += elSize; |
| 3471 | if (var->data.complex) { |
| 3472 | (void) memcpy(currImagRow, cDataPoint + pointSize/2, elSize); |
| 3473 | currImagRow += elSize; |
| 3474 | } |
| 3475 | } else { |
| 3476 | /* If out of range, fill in NaN or 0: |
| 3477 | 1) For bool, int32, uint32, int16, uint16, etc, |
| 3478 | memset to zeros; |
| 3479 | 2) For fixed-point data type, NaN conversion is not |
| 3480 | allowed, memset to zeros. |
| 3481 | */ |
| 3482 | if (dTypeID == SS_DOUBLE) { |
| 3483 | (void) memcpy(currRealRow, &rtNaN, elSize); |
| 3484 | } else if (dTypeID == SS_SINGLE){ |
| 3485 | (void) memcpy(currRealRow, &rtNaNF, elSize); |
| 3486 | } else { |
| 3487 | (void) memset(currRealRow, 0, elSize); |
| 3488 | } |
| 3489 | |
| 3490 | currRealRow += elSize; |
| 3491 | if (var->data.complex) { |
| 3492 | /* For imaginary part, fill in 0 */ |
| 3493 | (void) memset(currImagRow, 0, elSize); |
| 3494 | currImagRow += elSize; |
| 3495 | } |
| 3496 | } |
| 3497 | } |
| 3498 | else |
| 3499 | { |
| 3500 | /* YES conversion needed |
| 3501 | */ |
| 3502 | DTypeId dataTypeIdOriginal = |
| 3503 | var->data.dataTypeConvertInfo.dataTypeIdOriginal; |
| 3504 | int_T DpSize = (int_T)((var->data.complex) ? |
| 3505 | rt_GetSizeofComplexType(dataTypeIdOriginal) : |
| 3506 | rt_GetSizeofDataType(dataTypeIdOriginal)); |
| 3507 | |
| 3508 | DTypeId dataTypeIdLoggingTo = |
| 3509 | var->data.dataTypeConvertInfo.dataTypeIdLoggingTo; |
| 3510 | |
| 3511 | int bitsPerChunk = var->data.dataTypeConvertInfo.bitsPerChunk; |
| 3512 | int numOfChunk = var->data.dataTypeConvertInfo.numOfChunk; |
| 3513 | unsigned int isSigned = var->data.dataTypeConvertInfo.isSigned; |
| 3514 | |
| 3515 | double fracSlope = var->data.dataTypeConvertInfo.fracSlope; |
| 3516 | int fixedExp = var->data.dataTypeConvertInfo.fixedExp; |
| 3517 | double bias = var->data.dataTypeConvertInfo.bias; |
| 3518 | |
| 3519 | double curRealValue = -0.12345678987654; |
| 3520 | double curImagValue = -0.12345678987654; |
| 3521 | |
| 3522 | int_T adjIndexIfComplex = (var->data.complex) ? 2 : 1; |
| 3523 | |
| 3524 | if(inRange){ |
| 3525 | if(numOfChunk > 1) |
| 3526 | { |
| 3527 | /* For multiword */ |
| 3528 | const char *pInData = (const char *)(cData); |
| 3529 | int dtSize = bitsPerChunk*numOfChunk/8; |
| 3530 | pInData += ((i+frameSize*idx) * adjIndexIfComplex) * dtSize; |
| 3531 | |
| 3532 | curRealValue = rt_GetDblValueFromOverSizedData(pInData, bitsPerChunk, numOfChunk, |
| 3533 | isSigned, fracSlope, fixedExp, bias); |
| 3534 | if (var->data.complex) { |
| 3535 | curImagValue = rt_GetDblValueFromOverSizedData((pInData+dtSize), bitsPerChunk, numOfChunk, |
| 3536 | isSigned, fracSlope, fixedExp, bias); |
| 3537 | } |
| 3538 | } |
| 3539 | else |
| 3540 | { |
| 3541 | /* if in range, fill in data that is converted first */ |
| 3542 | switch ( dataTypeIdOriginal ) |
| 3543 | { |
| 3544 | case SS_DOUBLE: |
| 3545 | { |
| 3546 | const real_T *pInData = (const real_T *)(cData + (i+frameSize*idx)* DpSize); |
| 3547 | |
| 3548 | curRealValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3549 | if (var->data.complex) { |
| 3550 | pInData = (const real_T *)(cData + (i+frameSize*idx)* DpSize + DpSize/2); |
| 3551 | curImagValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3552 | } |
| 3553 | } |
| 3554 | break; |
| 3555 | case SS_SINGLE: |
| 3556 | { |
| 3557 | const real32_T *pInData = (const real32_T *)(cData + (i+frameSize*idx)* DpSize); |
| 3558 | |
| 3559 | curRealValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3560 | if (var->data.complex) { |
| 3561 | pInData = (const real32_T *)(cData + (i+frameSize*idx)* DpSize + DpSize/2); |
| 3562 | curImagValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3563 | } |
| 3564 | } |
| 3565 | break; |
| 3566 | case SS_INT8: |
| 3567 | { |
| 3568 | const int8_T *pInData = (const int8_T *)(cData + (i+frameSize*idx)* DpSize); |
| 3569 | |
| 3570 | curRealValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3571 | if (var->data.complex) { |
| 3572 | pInData = (const int8_T *)(cData + (i+frameSize*idx)* DpSize + DpSize/2); |
| 3573 | curImagValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3574 | } |
| 3575 | } |
| 3576 | break; |
| 3577 | case SS_UINT8: |
| 3578 | { |
| 3579 | const uint8_T *pInData = (const uint8_T *)(cData + (i+frameSize*idx)* DpSize); |
| 3580 | |
| 3581 | curRealValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3582 | if (var->data.complex) { |
| 3583 | pInData = (const uint8_T *)(cData + (i+frameSize*idx)* DpSize + DpSize/2); |
| 3584 | curImagValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3585 | } |
| 3586 | } |
| 3587 | break; |
| 3588 | case SS_INT16: |
| 3589 | { |
| 3590 | const int16_T *pInData = (const int16_T *)(cData + (i+frameSize*idx)* DpSize); |
| 3591 | |
| 3592 | curRealValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3593 | if (var->data.complex) { |
| 3594 | pInData = (const int16_T *)(cData + (i+frameSize*idx)* DpSize + DpSize/2); |
| 3595 | curImagValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3596 | } |
| 3597 | } |
| 3598 | break; |
| 3599 | case SS_UINT16: |
| 3600 | { |
| 3601 | const uint16_T *pInData = (const uint16_T *)(cData + (i+frameSize*idx)* DpSize); |
| 3602 | |
| 3603 | curRealValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3604 | if (var->data.complex) { |
| 3605 | pInData = (const uint16_T *)(cData + (i+frameSize*idx)* DpSize + DpSize/2); |
| 3606 | curImagValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3607 | } |
| 3608 | } |
| 3609 | break; |
| 3610 | case SS_INT32: |
| 3611 | { |
| 3612 | const int32_T *pInData = (const int32_T *)(cData + (i+frameSize*idx)* DpSize); |
| 3613 | |
| 3614 | curRealValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3615 | if (var->data.complex) { |
| 3616 | pInData = (const int32_T *)(cData + (i+frameSize*idx)* DpSize + DpSize/2); |
| 3617 | curImagValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3618 | } |
| 3619 | } |
| 3620 | break; |
| 3621 | case SS_UINT32: |
| 3622 | { |
| 3623 | const uint32_T *pInData = (const uint32_T *)(cData + (i+frameSize*idx)* DpSize); |
| 3624 | |
| 3625 | curRealValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3626 | if (var->data.complex) { |
| 3627 | pInData = (const uint32_T *)(cData + (i+frameSize*idx)* DpSize + DpSize/2); |
| 3628 | curImagValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3629 | } |
| 3630 | } |
| 3631 | break; |
| 3632 | case SS_BOOLEAN: |
| 3633 | { |
| 3634 | const boolean_T *pInData = ((const boolean_T *)(cData)); |
| 3635 | |
| 3636 | pInData += (i+frameSize*idx) * adjIndexIfComplex; |
| 3637 | |
| 3638 | curRealValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3639 | if (var->data.complex) { |
| 3640 | curImagValue = ldexp( fracSlope * (double)(*pInData), fixedExp ) + bias; |
| 3641 | } |
| 3642 | } |
| 3643 | break; |
| 3644 | default: |
| 3645 | { |
| 3646 | /* For biglong */ |
| 3647 | const char *pInData = (const char *)(cData); |
| 3648 | int dtSize = bitsPerChunk*numOfChunk/8; |
| 3649 | pInData += ((i+frameSize*idx) * adjIndexIfComplex) * dtSize; |
| 3650 | |
| 3651 | curRealValue = rt_GetDblValueFromOverSizedData(pInData, bitsPerChunk, numOfChunk, |
| 3652 | isSigned, fracSlope, fixedExp, bias); |
| 3653 | if (var->data.complex) { |
| 3654 | curImagValue = rt_GetDblValueFromOverSizedData((pInData+dtSize), bitsPerChunk, numOfChunk, |
| 3655 | isSigned, fracSlope, fixedExp, bias); |
| 3656 | } |
| 3657 | } |
| 3658 | break; |
| 3659 | } /* -- end of switch -- */ |
| 3660 | } |
| 3661 | } else { |
| 3662 | /* if out of range, just fill NaN or 0 */ |
| 3663 | if(dTypeID == SS_DOUBLE || dTypeID == SS_SINGLE){ |
| 3664 | /* vijay 4/11/2013: DO NOT CALL ldexp() with NaN below as it causes |
| 3665 | * lcc-win64 to generate inf instead of NaN as output. |
| 3666 | * Just use rtNaN directly */ |
| 3667 | curRealValue = rtNaN; |
| 3668 | } |
| 3669 | else{ |
| 3670 | curRealValue = ldexp( 0, fixedExp ) + bias; |
| 3671 | } |
| 3672 | if (var->data.complex) { |
| 3673 | /* fill 0 in imaginary part*/ |
| 3674 | curImagValue = ldexp( 0, fixedExp ) + bias; |
| 3675 | } |
| 3676 | } |
| 3677 | |
| 3678 | switch ( dataTypeIdLoggingTo ) |
| 3679 | { |
| 3680 | case SS_DOUBLE: |
| 3681 | { |
| 3682 | *((real_T *)currRealRow) = (real_T)curRealValue; |
| 3683 | |
| 3684 | if (var->data.complex) { |
| 3685 | |
| 3686 | *((real_T *)currImagRow) = (real_T)curImagValue; |
| 3687 | } |
| 3688 | } |
| 3689 | break; |
| 3690 | case SS_SINGLE: |
| 3691 | { |
| 3692 | *((real32_T *)currRealRow) = (real32_T)curRealValue; |
| 3693 | |
| 3694 | if (var->data.complex) { |
| 3695 | |
| 3696 | *((real32_T *)currImagRow) = (real32_T)curImagValue; |
| 3697 | } |
| 3698 | } |
| 3699 | break; |
| 3700 | case SS_INT8: |
| 3701 | { |
| 3702 | *((int8_T *)currRealRow) = (int8_T)curRealValue; |
| 3703 | |
| 3704 | if (var->data.complex) { |
| 3705 | |
| 3706 | *((int8_T *)currImagRow) = (int8_T)curImagValue; |
| 3707 | } |
| 3708 | } |
| 3709 | break; |
| 3710 | case SS_UINT8: |
| 3711 | { |
| 3712 | *((uint8_T *)currRealRow) = (uint8_T)curRealValue; |
| 3713 | |
| 3714 | if (var->data.complex) { |
| 3715 | |
| 3716 | *((uint8_T *)currImagRow) = (uint8_T)curImagValue; |
| 3717 | } |
| 3718 | } |
| 3719 | break; |
| 3720 | case SS_INT16: |
| 3721 | { |
| 3722 | *((int16_T *)currRealRow) = (int16_T)curRealValue; |
| 3723 | |
| 3724 | if (var->data.complex) { |
| 3725 | |
| 3726 | *((int16_T *)currImagRow) = (int16_T)curImagValue; |
| 3727 | } |
| 3728 | } |
| 3729 | break; |
| 3730 | case SS_UINT16: |
| 3731 | { |
| 3732 | *((uint16_T *)currRealRow) = (uint16_T)curRealValue; |
| 3733 | |
| 3734 | if (var->data.complex) { |
| 3735 | |
| 3736 | *((uint16_T *)currImagRow) = (uint16_T)curImagValue; |
| 3737 | } |
| 3738 | } |
| 3739 | break; |
| 3740 | case SS_INT32: |
| 3741 | { |
| 3742 | *((int32_T *)currRealRow) = (int32_T)curRealValue; |
| 3743 | |
| 3744 | if (var->data.complex) { |
| 3745 | |
| 3746 | *((int32_T *)currImagRow) = (int32_T)curImagValue; |
| 3747 | } |
| 3748 | } |
| 3749 | break; |
| 3750 | case SS_UINT32: |
| 3751 | { |
| 3752 | *((uint32_T *)currRealRow) = (uint32_T)curRealValue; |
| 3753 | |
| 3754 | if (var->data.complex) { |
| 3755 | |
| 3756 | *((uint32_T *)currImagRow) = (uint32_T)curImagValue; |
| 3757 | } |
| 3758 | } |
| 3759 | break; |
| 3760 | case SS_BOOLEAN: |
| 3761 | { |
| 3762 | *((boolean_T *)currRealRow) = (boolean_T)(curRealValue != 0.0); |
| 3763 | |
| 3764 | if (var->data.complex) { |
| 3765 | |
| 3766 | *((boolean_T *)currImagRow) = (boolean_T)(curImagValue != 0.0); |
| 3767 | } |
| 3768 | } |
| 3769 | break; |
| 3770 | } /* -- end of switch -- */ |
| 3771 | |
| 3772 | currRealRow += elSize; |
| 3773 | if (var->data.complex) { |
| 3774 | currImagRow += elSize; |
| 3775 | } |
| 3776 | } |
| 3777 | } |
| 3778 | |
| 3779 | if(isVarDims){ /* update "valueDimensions" field */ |
| 3780 | for(j = 0; j < logWidth_valDims; j ++){ |
| 3781 | int32_T currDimsVal=0; |
| 3782 | switch (currDimsSizePtr[j]) { |
| 3783 | case 1: |
| 3784 | currDimsVal = (**(((const uint8_T * const *) currDimsPtr)+j)); |
| 3785 | break; |
| 3786 | case 2: |
| 3787 | currDimsVal = (**(((const uint16_T * const *) currDimsPtr)+j)); |
| 3788 | break; |
| 3789 | case 4: |
| 3790 | currDimsVal = (**(((const uint32_T * const *) currDimsPtr)+j)); |
| 3791 | break; |
| 3792 | } |
| 3793 | offset_valDims = (size_t)(elSize_valDims *( var->rowIdx + nRows_valDims * j)); |
| 3794 | currValDimsRow = ((char_T*) (var->valDims->dimsData)) + offset_valDims; |
| 3795 | |
| 3796 | /* convert int_T to real_T */ |
| 3797 | currentSigDims = (real_T) currDimsVal; |
| 3798 | (void) memcpy(currValDimsRow, ¤tSigDims, elSize_valDims); |
| 3799 | currValDimsRow += elSize_valDims; |
| 3800 | } |
| 3801 | } |
| 3802 | |
| 3803 | ++var->rowIdx; |
| 3804 | } |
| 3805 | |
| 3806 | return; |
| 3807 | |
| 3808 | } /* end rt_UpdateLogVar */ |
| 3809 | |
| 3810 | |
| 3811 | #ifdef __cplusplus |
| 3812 | } |
| 3813 | #endif |
| 3814 | |
| 3815 | |
| 3816 | |
| 3817 | |
| 3818 | #ifdef __cplusplus |
| 3819 | extern "C" { |
| 3820 | #endif |
| 3821 | |
| 3822 | |
| 3823 | /* Function: rt_UpdateStructLogVar ============================================= |
| 3824 | * Abstract: |
| 3825 | * Called to log data for a structure log variable. |
| 3826 | */ |
| 3827 | void rt_UpdateStructLogVar(StructLogVar *var, const real_T *t, const void *data) |
| 3828 | { |
| 3829 | LogVar *values = var->signals.values; |
| 3830 | const char_T *signal = data; |
| 3831 | boolean_T *isVarDims = var->signals.isVarDims; |
| 3832 | int i = 0; |
| 3833 | |
| 3834 | /* time */ |
| 3835 | if (var->logTime) { |
| 3836 | rt_UpdateLogVar(var->time, t, false); |
| 3837 | } |
| 3838 | |
| 3839 | /* signals */ |
| 3840 | while (values) { |
| 3841 | size_t elSz = values->data.elSize; |
| 3842 | |
| 3843 | rt_UpdateLogVar(values, signal, isVarDims[i]); |
| 3844 | |
| 3845 | if (values->data.complex) elSz *= 2; |
| 3846 | signal += elSz * values->data.nCols; |
| 3847 | |
| 3848 | values = values->next; |
| 3849 | i++; |
| 3850 | } |
| 3851 | |
| 3852 | } /* end rt_UpdateStructLogVar */ |
| 3853 | |
| 3854 | |
| 3855 | #ifdef __cplusplus |
| 3856 | } |
| 3857 | #endif |
| 3858 | |
| 3859 | |
| 3860 | |
| 3861 | |
| 3862 | #ifdef __cplusplus |
| 3863 | extern "C" { |
| 3864 | #endif |
| 3865 | |
| 3866 | /* |
| 3867 | * g1614989:Refactoring this function to accept number of elements |
| 3868 | * instead of accepting signalInfo and index. |
| 3869 | */ |
| 3870 | void* rt_getTempMemory(LogVar* var, int_T numEls); |
| 3871 | |
| 3872 | void* rt_getTempMemory(LogVar* var, int_T numEls) |
| 3873 | { |
| 3874 | size_t elSize = var->data.elSize; |
| 3875 | size_t cmplxMult = var->data.complex ? 2 : 1; |
| 3876 | /* |
| 3877 | * g1689750: With multiword support for mat file logging in row major array layout, we need to allocate more space to |
| 3878 | * store the data when the transpose operation is being performed. The additional space is required to store multiple |
| 3879 | * chunks that each multi word contains. |
| 3880 | */ |
| 3881 | size_t numOfChunks = var->data.dataTypeConvertInfo.conversionNeeded ? var->data.dataTypeConvertInfo.numOfChunk : 1; |
| 3882 | void* tempMemory = malloc(elSize * numEls * cmplxMult * numOfChunks); |
| 3883 | return tempMemory; |
| 3884 | } |
| 3885 | |
| 3886 | /* |
| 3887 | * g1614989:This function processes the signal data if a function pointer is available and then logs the data. |
| 3888 | * If a function pointer is not present, signal data is logged without any processing. |
| 3889 | * The idx parameter specifies which information from the SignalInfo to be used for processing and logging. |
| 3890 | * When idx is -1, the provided signal info is to be used for processing and logging the data. |
| 3891 | */ |
| 3892 | void rt_preProcessAndLogDataWithIndex(const RTWLogSignalInfo *signalInfo, int_T idx, LogVar* val, const void * data, boolean_T isVarDims); |
| 3893 | |
| 3894 | void rt_preProcessAndLogDataWithIndex(const RTWLogSignalInfo *signalInfo, int_T idx, LogVar* val, const void * data, boolean_T isVarDims) |
| 3895 | { |
| 3896 | RTWPreprocessingFcnPtr preprocessingPtr = NULL; |
| 3897 | int_T numEls = -1; |
| 3898 | if (idx == -1) { |
| 3899 | preprocessingPtr = *(signalInfo->preprocessingPtrs); |
| 3900 | numEls = *(signalInfo->numCols); |
| 3901 | } |
| 3902 | else { |
| 3903 | preprocessingPtr = signalInfo->preprocessingPtrs[idx]; |
| 3904 | numEls = signalInfo->numCols[idx]; |
| 3905 | } |
| 3906 | |
| 3907 | if (preprocessingPtr != NULL) { |
| 3908 | void* curData = rt_getTempMemory(val, numEls); |
| 3909 | preprocessingPtr(curData, data); |
| 3910 | rt_UpdateLogVar(val, curData, isVarDims); |
| 3911 | free(curData); |
| 3912 | } |
| 3913 | else { |
| 3914 | rt_UpdateLogVar(val, data, isVarDims); |
| 3915 | } |
| 3916 | } |
| 3917 | |
| 3918 | /* |
| 3919 | * g1614989:This function is called when each signal has a specific RTWLogSignalInfo structure defined. |
| 3920 | */ |
| 3921 | |
| 3922 | void rt_preProcessAndLogData(RTWLogSignalInfo signalInfo, LogVar* val, const void * data, boolean_T isVarDims); |
| 3923 | |
| 3924 | void rt_preProcessAndLogData(RTWLogSignalInfo signalInfo, LogVar* val, const void * data, boolean_T isVarDims) |
| 3925 | { |
| 3926 | rt_preProcessAndLogDataWithIndex(&signalInfo, -1, val, data, isVarDims); |
| 3927 | } |
| 3928 | |
| 3929 | /* Function: rt_UpdateTXYLogVars =============================================== |
| 3930 | * Abstract: |
| 3931 | * Update the xFinal,T,X,Y variables that are being logged. |
| 3932 | */ |
| 3933 | const char_T *rt_UpdateTXYLogVars(RTWLogInfo *li, time_T *tPtr) |
| 3934 | { |
| 3935 | return rt_UpdateTXXFYLogVars(li, tPtr, true); |
| 3936 | } |
| 3937 | |
| 3938 | /* Function: rt_UpdateTXXFYLogVars ============================================= |
| 3939 | * Abstract: |
| 3940 | * Update xFinal and/or the T,X,Y variables that are being logged |
| 3941 | */ |
| 3942 | const char_T *rt_UpdateTXXFYLogVars(RTWLogInfo *li, time_T *tPtr, boolean_T updateTXY) |
| 3943 | { |
| 3944 | LogInfo *logInfo = rtliGetLogInfo(li); |
| 3945 | int_T matrixFormat = (rtliGetLogFormat(li) == 0); |
| 3946 | const RTWLogSignalInfo* yInfo = rtliGetLogYSignalInfo(li); |
| 3947 | const RTWLogSignalInfo* xInfo = rtliGetLogXSignalInfo(li); |
| 3948 | |
| 3949 | /* time */ |
| 3950 | if (logInfo->t != NULL && updateTXY) { |
| 3951 | rt_UpdateLogVar(logInfo->t, tPtr, false); |
| 3952 | } |
| 3953 | |
| 3954 | if (matrixFormat) { /* MATRIX_FORMAT */ |
| 3955 | /* states */ |
| 3956 | if (logInfo->x != NULL || logInfo->xFinal != NULL) { |
| 3957 | int8_T** segAddr = _rtliGetLogXSignalPtrs(li); |
| 3958 | const int_T *segLengths = xInfo->numCols; |
| 3959 | int_T nSegments = xInfo->numSignals; |
| 3960 | RTWPreprocessingFcnPtr* preprocessingPtrs = xInfo->preprocessingPtrs; |
| 3961 | |
| 3962 | if (logInfo->x != NULL && updateTXY) { |
| 3963 | const char_T *errorMessage = rt_UpdateLogVarWithDiscontiguousData(logInfo->x, segAddr, |
| 3964 | segLengths, nSegments, |
| 3965 | preprocessingPtrs); |
| 3966 | if (errorMessage != NULL) return(errorMessage); |
| 3967 | } |
| 3968 | if (logInfo->xFinal != NULL) { |
| 3969 | const char_T *errorMessage = rt_UpdateLogVarWithDiscontiguousData(logInfo->xFinal, segAddr, |
| 3970 | segLengths, nSegments, |
| 3971 | preprocessingPtrs); |
| 3972 | if (errorMessage != NULL) return(errorMessage); |
| 3973 | } |
| 3974 | } |
| 3975 | /* outputs */ |
| 3976 | if (logInfo->y != NULL && updateTXY) { |
| 3977 | LogVar **var = (LogVar**) (logInfo->y); |
| 3978 | int_T ny = logInfo->ny; |
| 3979 | int_T i; |
| 3980 | int yIdx; |
| 3981 | LogSignalPtrsType data = rtliGetLogYSignalPtrs(li); |
| 3982 | |
| 3983 | for (i = 0, yIdx = 0; i < ny; i++) { |
| 3984 | if (data[i] != NULL) { |
| 3985 | /* |
| 3986 | When outputs are logged in Matrix format, |
| 3987 | no variable-size signal logging is allowed. |
| 3988 | */ |
| 3989 | /* g1614989:Code refactoring and fix for logging issue. |
| 3990 | * Function pointer is now identified by using |
| 3991 | * Y Signal Info instead of iterating over pre-processing |
| 3992 | * function pointers. |
| 3993 | */ |
| 3994 | rt_preProcessAndLogData(yInfo[yIdx], var[yIdx], data[i], false); |
| 3995 | yIdx++; |
| 3996 | } |
| 3997 | } |
| 3998 | } |
| 3999 | } else { /* STRUCTURE_FORMAT */ |
| 4000 | /* states */ |
| 4001 | if (logInfo->x != NULL && updateTXY) { |
| 4002 | int_T i; |
| 4003 | StructLogVar *var = logInfo->x; |
| 4004 | LogVar *val = var->signals.values; |
| 4005 | int_T nsig = var->signals.numSignals; |
| 4006 | LogSignalPtrsType data = rtliGetLogXSignalPtrs(li); |
| 4007 | |
| 4008 | /* time */ |
| 4009 | if (var->logTime) { |
| 4010 | rt_UpdateLogVar(var->time, tPtr, false); |
| 4011 | } |
| 4012 | |
| 4013 | /* signals */ |
| 4014 | for (i = 0; i < nsig; i++) { |
| 4015 | /* g1614989:Code refactoring and fix for logging issue. |
| 4016 | * Function pointer is now identified by using |
| 4017 | * X Signal Info instead of iterating over pre-processing |
| 4018 | * function pointers. |
| 4019 | */ |
| 4020 | rt_preProcessAndLogDataWithIndex(xInfo, i, val, data[i], false); |
| 4021 | val = val->next; |
| 4022 | } |
| 4023 | } |
| 4024 | |
| 4025 | /* outputs */ |
| 4026 | if (logInfo->y != NULL && updateTXY) { |
| 4027 | int_T ny = logInfo->ny; |
| 4028 | LogSignalPtrsType data = rtliGetLogYSignalPtrs(li); |
| 4029 | StructLogVar **var = (StructLogVar**) (logInfo->y); |
| 4030 | |
| 4031 | if (ny == 1) { |
| 4032 | int_T i; |
| 4033 | int_T dataIdx; |
| 4034 | LogVar *val = var[0]->signals.values; |
| 4035 | int_T nsig = var[0]->signals.numSignals; |
| 4036 | boolean_T *isVarDims = var[0]->signals.isVarDims; |
| 4037 | |
| 4038 | /* time */ |
| 4039 | if (var[0]->logTime) { |
| 4040 | rt_UpdateLogVar(var[0]->time, tPtr, false); |
| 4041 | } |
| 4042 | |
| 4043 | /* signals */ |
| 4044 | for (i = 0, dataIdx = 0; i < nsig; i++) { |
| 4045 | while (data[dataIdx] == NULL) { |
| 4046 | ++dataIdx; |
| 4047 | } |
| 4048 | /* g1614989:Code refactoring and fix for logging issue. |
| 4049 | * Function pointer is now identified by using |
| 4050 | * Y Signal Info instead of iterating over pre-processing |
| 4051 | * function pointers. |
| 4052 | */ |
| 4053 | rt_preProcessAndLogDataWithIndex(yInfo, i, val, data[dataIdx], isVarDims[i]); |
| 4054 | dataIdx++; |
| 4055 | val = val->next; |
| 4056 | } |
| 4057 | } else { |
| 4058 | int_T i; |
| 4059 | int_T dataIdx; |
| 4060 | |
| 4061 | for (i = 0, dataIdx = 0; i < ny && var[i] != NULL; i++) { |
| 4062 | LogVar *val = var[i]->signals.values; |
| 4063 | boolean_T *isVarDims = var[i]->signals.isVarDims; |
| 4064 | |
| 4065 | /* time */ |
| 4066 | if (var[i]->logTime) { |
| 4067 | rt_UpdateLogVar(var[i]->time, tPtr, false); |
| 4068 | } |
| 4069 | |
| 4070 | /* signals */ |
| 4071 | while (data[dataIdx] == NULL) { |
| 4072 | ++dataIdx; |
| 4073 | } |
| 4074 | /* g1614989:Code refactoring and fix for logging issue. |
| 4075 | * Function pointer is now identified by using |
| 4076 | * Y Signal Info instead of iterating over pre-processing |
| 4077 | * function pointers. |
| 4078 | */ |
| 4079 | rt_preProcessAndLogData(yInfo[i], val, data[dataIdx], isVarDims[0]); |
| 4080 | dataIdx++; |
| 4081 | val = val->next; |
| 4082 | } |
| 4083 | } |
| 4084 | } |
| 4085 | /* final state */ |
| 4086 | if (logInfo->xFinal != NULL) { |
| 4087 | StructLogVar *xf = logInfo->xFinal; |
| 4088 | LogVar *val = xf->signals.values; |
| 4089 | int_T nsig = xf->signals.numSignals; |
| 4090 | int_T i; |
| 4091 | |
| 4092 | /* time */ |
| 4093 | if (xf->logTime) { |
| 4094 | rt_UpdateLogVar(xf->time, tPtr, false); |
| 4095 | } |
| 4096 | |
| 4097 | /* signals */ |
| 4098 | for (i = 0; i < nsig; i++) { |
| 4099 | LogSignalPtrsType data = rtliGetLogXSignalPtrs(li); |
| 4100 | /* g1614989:Code refactoring and fix for logging issue. |
| 4101 | * Function pointer is now identified by using |
| 4102 | * X Signal Info instead of iterating over pre-processing |
| 4103 | * function pointers. |
| 4104 | */ |
| 4105 | rt_preProcessAndLogDataWithIndex(xInfo, i, val, data[i], false); |
| 4106 | val = val->next; |
| 4107 | } |
| 4108 | } |
| 4109 | } |
| 4110 | return(NULL); |
| 4111 | } /* end rt_UpdateTXXFYLogVars */ |
| 4112 | |
| 4113 | |
| 4114 | #ifdef __cplusplus |
| 4115 | } |
| 4116 | #endif |
| 4117 | |
| 4118 | |
| 4119 | |
| 4120 | |
| 4121 | #ifdef __cplusplus |
| 4122 | extern "C" { |
| 4123 | #endif |
| 4124 | |
| 4125 | |
| 4126 | /* Function: rt_StopDataLoggingImpl ======================================= |
| 4127 | * Abstract: |
| 4128 | * Write logged data to model.mat and free memory. |
| 4129 | */ |
| 4130 | void rt_StopDataLoggingImpl(const char_T *file, RTWLogInfo *li, boolean_T isRaccel) |
| 4131 | { |
| 4132 | FILE *fptr; |
| 4133 | LogInfo *logInfo = (LogInfo*) rtliGetLogInfo(li); |
| 4134 | LogVar *var = logInfo->logVarsList; |
| 4135 | StructLogVar *svar = logInfo->structLogVarsList; |
| 4136 | /* At this time, verbose is only needed if running rapid accelerator |
| 4137 | * simulations. */ |
| 4138 | int verbose = isRaccel ? 0: 1; |
| 4139 | |
| 4140 | boolean_T emptyFile = 1; /* assume */ |
| 4141 | boolean_T errFlag = 0; |
| 4142 | const char_T *msg; |
| 4143 | |
| 4144 | /******************************* |
| 4145 | * Create MAT file with header * |
| 4146 | *******************************/ |
| 4147 | if ((fptr=fopen(file,"w+b")) == NULL) { |
| 4148 | (void)fprintf(stderr,"*** Error opening %s",file); |
| 4149 | goto EXIT_POINT; |
| 4150 | } |
| 4151 | if (rt_WriteMat5FileHeader(fptr)) { |
| 4152 | (void)fprintf(stderr,"*** Error writing to %s",file); |
| 4153 | goto EXIT_POINT; |
| 4154 | } |
| 4155 | |
| 4156 | /************************************************** |
| 4157 | * First log all the variables in the LogVar list * |
| 4158 | **************************************************/ |
| 4159 | while (var != NULL) { |
| 4160 | if ( (msg = rt_FixupLogVar(var,verbose)) != NULL ) { |
| 4161 | (void)fprintf(stderr,"*** Error writing %s due to: %s\n",file,msg); |
| 4162 | errFlag = 1; |
| 4163 | break; |
| 4164 | } |
| 4165 | if (var->nDataPoints > 0 || isRaccel) { |
| 4166 | MatItem item; |
| 4167 | |
| 4168 | item.type = matMATRIX; |
| 4169 | item.nbytes = 0; /* not yet known */ |
| 4170 | item.data = &(var->data); |
| 4171 | if (rt_WriteItemToMatFile(fptr, &item, MATRIX_ITEM)) { |
| 4172 | (void)fprintf(stderr,"*** Error writing log variable %s to " |
| 4173 | "file %s",var->data.name, file); |
| 4174 | errFlag = 1; |
| 4175 | break; |
| 4176 | } |
| 4177 | emptyFile = 0; |
| 4178 | } |
| 4179 | var = var->next; |
| 4180 | } |
| 4181 | /* free up some memory by destroying the log var list here */ |
| 4182 | rt_DestroyLogVar(logInfo->logVarsList); |
| 4183 | logInfo->logVarsList = NULL; |
| 4184 | |
| 4185 | /******************************************************* |
| 4186 | * Next log all the variables in the StructLogVar list * |
| 4187 | *******************************************************/ |
| 4188 | while (svar != NULL) { |
| 4189 | MatItem item; |
| 4190 | |
| 4191 | if (svar->logTime) { |
| 4192 | var = svar->time; |
| 4193 | if ( (msg = rt_FixupLogVar(var,verbose)) != NULL ) { |
| 4194 | (void)fprintf(stderr, "*** Error writing %s due to: %s\n", |
| 4195 | file, msg); |
| 4196 | errFlag = 1; |
| 4197 | break; |
| 4198 | } |
| 4199 | } |
| 4200 | |
| 4201 | var = svar->signals.values; |
| 4202 | while (var) { |
| 4203 | if ( (msg = rt_FixupLogVar(var,verbose)) != NULL ) { |
| 4204 | (void)fprintf(stderr, "*** Error writing %s due to: %s\n", |
| 4205 | file, msg); |
| 4206 | errFlag = 1; |
| 4207 | break; |
| 4208 | } |
| 4209 | var = var->next; |
| 4210 | } |
| 4211 | |
| 4212 | item.type = matMATRIX; |
| 4213 | item.nbytes = 0; /* not yet known */ |
| 4214 | item.data = svar; |
| 4215 | |
| 4216 | if (rt_WriteItemToMatFile(fptr, &item, STRUCT_LOG_VAR_ITEM)) { |
| 4217 | (void)fprintf(stderr,"*** Error writing structure log variable " |
| 4218 | "%s to file %s",svar->name, file); |
| 4219 | errFlag = 1; |
| 4220 | break; |
| 4221 | } |
| 4222 | emptyFile = 0; |
| 4223 | |
| 4224 | svar = svar->next; |
| 4225 | } |
| 4226 | |
| 4227 | /****************** |
| 4228 | * Close the file * |
| 4229 | ******************/ |
| 4230 | (void)fclose(fptr); |
| 4231 | if (emptyFile || errFlag) { |
| 4232 | (void)remove(file); |
| 4233 | } else { |
| 4234 | if( verbose ) { |
| 4235 | (void)printf("** created %s **\n\n", file); |
| 4236 | } |
| 4237 | } |
| 4238 | |
| 4239 | EXIT_POINT: |
| 4240 | |
| 4241 | /**************** |
| 4242 | * free logInfo * |
| 4243 | ****************/ |
| 4244 | rt_DestroyLogVar(logInfo->logVarsList); |
| 4245 | logInfo->logVarsList = NULL; |
| 4246 | rt_DestroyStructLogVar(logInfo->structLogVarsList); |
| 4247 | logInfo->structLogVarsList = NULL; |
| 4248 | FREE(logInfo->y); |
| 4249 | logInfo->y = NULL; |
| 4250 | FREE(logInfo); |
| 4251 | rtliSetLogInfo(li,NULL); |
| 4252 | |
| 4253 | } /* end rt_StopDataLoggingImpl */ |
| 4254 | |
| 4255 | |
| 4256 | #ifdef __cplusplus |
| 4257 | } |
| 4258 | #endif |
| 4259 | |
| 4260 | |
| 4261 | #ifdef __cplusplus |
| 4262 | extern "C" { |
| 4263 | #endif |
| 4264 | |
| 4265 | |
| 4266 | /* Function: rt_StopDataLogging ================================================ |
| 4267 | * Abstract: |
| 4268 | * Write logged data to model.mat and free memory. |
| 4269 | */ |
| 4270 | void rt_StopDataLogging(const char_T *file, RTWLogInfo *li) |
| 4271 | { |
| 4272 | rt_StopDataLoggingImpl(file,li,false); |
| 4273 | |
| 4274 | } /* end rt_StopDataLogging */ |
| 4275 | |
| 4276 | |
| 4277 | #ifdef __cplusplus |
| 4278 | } |
| 4279 | #endif |
| 4280 | |
| 4281 | #else /*!defined(MAT_FILE) || (defined(MAT_FILE) && MAT_FILE == 1)*/ |
| 4282 | |
| 4283 | #define rt_StartDataLogging(li, finalTime, stepSize, errStatus) NULL /* do nothing */ |
| 4284 | #define rt_UpdateTXYLogVars(li, tPtr) NULL /* do nothing */ |
| 4285 | #define rt_StopDataLogging(file, li) { (void(file)); } /* use file quiet unused macro warning */ /* do nothing */ |
| 4286 | |
| 4287 | #endif /*!defined(MAT_FILE) || (defined(MAT_FILE) && MAT_FILE == 1)*/ |
| 4288 | |
| 4289 | |
| 4290 | |
| 4291 | /* [eof] rt_logging.c */ |
| 4292 | |
| 4293 | /* LocalWords: Tfinal MAXNAM nonfinite DType PWS RSim Fixup logvar DDEFAULT th |
| 4294 | * LocalWords: curr Realloc realloc inp biglong vijay ldexp TXY eof XFinal th |
| 4295 | * LocalWords: TXXFY NULL typedefs ret polyspace NUL |
| 4296 | */ |
| 4297 | |