| 1 | /* |
| 2 | * rt_nonfinite.cpp |
| 3 | * |
| 4 | * Academic License - for use in teaching, academic research, and meeting |
| 5 | * course requirements at degree granting institutions only. Not for |
| 6 | * government, commercial, or other organizational use. |
| 7 | * |
| 8 | * Code generation for model "Arduino_skal". |
| 9 | * |
| 10 | * Model version : 1.1 |
| 11 | * Simulink Coder version : 9.5 (R2021a) 14-Nov-2020 |
| 12 | * C++ source code generated on : Thu Apr 15 15:56:50 2021 |
| 13 | * |
| 14 | * Target selection: grt.tlc |
| 15 | * Note: GRT includes extra infrastructure and instrumentation for prototyping |
| 16 | * Embedded hardware selection: Intel->x86-64 (Windows64) |
| 17 | * Code generation objective: Debugging |
| 18 | * Validation result: Not run |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | * Abstract: |
| 23 | * Function to initialize non-finites, |
| 24 | * (Inf, NaN and -Inf). |
| 25 | */ |
| 26 | #include "rt_nonfinite.h" |
| 27 | #include "rtGetNaN.h" |
| 28 | #include "rtGetInf.h" |
| 29 | #define NumBitsPerChar 8U |
| 30 | |
| 31 | extern "C" { |
| 32 | real_T rtInf; |
| 33 | real_T rtMinusInf; |
| 34 | real_T rtNaN; |
| 35 | real32_T rtInfF; |
| 36 | real32_T rtMinusInfF; |
| 37 | real32_T rtNaNF; |
| 38 | } |
| 39 | extern "C" |
| 40 | { |
| 41 | /* |
| 42 | * Initialize the rtInf, rtMinusInf, and rtNaN needed by the |
| 43 | * generated code. NaN is initialized as non-signaling. Assumes IEEE. |
| 44 | */ |
| 45 | void rt_InitInfAndNaN(size_t realSize) |
| 46 | { |
| 47 | (void) (realSize); |
| 48 | rtNaN = rtGetNaN(); |
| 49 | rtNaNF = rtGetNaNF(); |
| 50 | rtInf = rtGetInf(); |
| 51 | rtInfF = rtGetInfF(); |
| 52 | rtMinusInf = rtGetMinusInf(); |
| 53 | rtMinusInfF = rtGetMinusInfF(); |
| 54 | } |
| 55 | |
| 56 | /* Test if value is infinite */ |
| 57 | boolean_T rtIsInf(real_T value) |
| 58 | { |
| 59 | return (boolean_T)((value==rtInf || value==rtMinusInf) ? 1U : 0U); |
| 60 | } |
| 61 | |
| 62 | /* Test if single-precision value is infinite */ |
| 63 | boolean_T rtIsInfF(real32_T value) |
| 64 | { |
| 65 | return (boolean_T)(((value)==rtInfF || (value)==rtMinusInfF) ? 1U : 0U); |
| 66 | } |
| 67 | |
| 68 | /* Test if value is not a number */ |
| 69 | boolean_T rtIsNaN(real_T value) |
| 70 | { |
| 71 | boolean_T result = (boolean_T) 0; |
| 72 | size_t bitsPerReal = sizeof(real_T) * (NumBitsPerChar); |
| 73 | if (bitsPerReal == 32U) { |
| 74 | result = rtIsNaNF((real32_T)value); |
| 75 | } else { |
| 76 | union { |
| 77 | LittleEndianIEEEDouble bitVal; |
| 78 | real_T fltVal; |
| 79 | } tmpVal; |
| 80 | |
| 81 | tmpVal.fltVal = value; |
| 82 | result = (boolean_T)((tmpVal.bitVal.words.wordH & 0x7FF00000) == |
| 83 | 0x7FF00000 && |
| 84 | ( (tmpVal.bitVal.words.wordH & 0x000FFFFF) != 0 || |
| 85 | (tmpVal.bitVal.words.wordL != 0) )); |
| 86 | } |
| 87 | |
| 88 | return result; |
| 89 | } |
| 90 | |
| 91 | /* Test if single-precision value is not a number */ |
| 92 | boolean_T rtIsNaNF(real32_T value) |
| 93 | { |
| 94 | IEEESingle tmp; |
| 95 | tmp.wordL.wordLreal = value; |
| 96 | return (boolean_T)( (tmp.wordL.wordLuint & 0x7F800000) == 0x7F800000 && |
| 97 | (tmp.wordL.wordLuint & 0x007FFFFF) != 0 ); |
| 98 | } |
| 99 | } |
| 100 |