decision logic, income, best upgrade/residence functions
This commit is contained in:
parent
9ae3b54c41
commit
1bb5ba898d
128
main.py
128
main.py
@ -13,6 +13,7 @@ game_layer = GameLayer(api_key)
|
||||
# settings
|
||||
time_until_run_ends = 70
|
||||
utilities = 3
|
||||
money_reserve_multiplier = 1.5
|
||||
|
||||
|
||||
def main():
|
||||
@ -118,12 +119,12 @@ def develop_society():
|
||||
|
||||
# priority scores, 1 = very urgent, 0 = not urgent at all
|
||||
# queue modifier * funds modifier * existing houses modifier
|
||||
build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (1 - (7500 / state.funds)) * (1 - (len(state.residences) / (len(available_tiles)-utilities)))
|
||||
build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (1 - (7500 / (1 + state.funds))) * (1 - (len(state.residences) / (1 + len(available_tiles) - utilities)))
|
||||
upgrade_residence_score = 0
|
||||
# existing houses modifier * funds modifier * existing utilities modifier
|
||||
build_utility_score = (len(state.residences) / (len(available_tiles)-utilities)) * (1 - (16000 / state.funds)) * (1 - (len(state.utilities) / utilities))
|
||||
build_utility_score = (len(state.residences) / (1 + len(available_tiles)-utilities)) * (1 - (16000 / (1 + state.funds))) * (1 - (len(state.utilities) / utilities))
|
||||
# turn modifier * funds modifier
|
||||
build_upgrade_score = (1 - (state.turn / 700)) * (2 - (15000 / state.funds))
|
||||
build_upgrade_score = (1 - (state.turn / 700)) * (2 - (15000 / (1 + state.funds)))
|
||||
|
||||
if len(state.residences) < 1:
|
||||
build_residence_score = 100
|
||||
@ -137,28 +138,35 @@ def develop_society():
|
||||
def sort_key(e):
|
||||
return e[1]
|
||||
decision.sort(reverse=True, key=sort_key)
|
||||
print(decision)
|
||||
|
||||
for i in range(4):
|
||||
if decision[0][0] == "build_residence": # build housing
|
||||
queue_timeout = 5
|
||||
if len(state.residences) < len(state.available_residence_buildings):
|
||||
return build(state.available_residence_buildings[len(state.residences)].building_name)
|
||||
else:
|
||||
calculate_residence_score()
|
||||
#if len(state.residences) < len(state.available_residence_buildings):
|
||||
# return build(state.available_residence_buildings[len(state.residences)].building_name)
|
||||
#else:
|
||||
cbr = calculate_best_residence()
|
||||
if cbr:
|
||||
return build(cbr[1])
|
||||
if decision[0][0] == "build_utility": # build utilities
|
||||
return build("WindTurbine")
|
||||
|
||||
#return build("WindTurbine")
|
||||
pass
|
||||
if decision[0][0] == "upgrade_residence": # build utilities
|
||||
pass
|
||||
|
||||
if decision[0][0] == "build_upgrade": # build upgrades
|
||||
for i in range(6):
|
||||
for residence in state.residences:
|
||||
if state.available_upgrades[i].name not in residence.effects:
|
||||
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[i].name)
|
||||
return True
|
||||
for residence in state.residences:
|
||||
if state.available_upgrades[0].name not in residence.effects and (money_reserve_multiplier*3500 < state.funds) and ((total_income() - 6) > 50):
|
||||
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[0].name)
|
||||
return True
|
||||
if state.available_upgrades[5].name not in residence.effects and (money_reserve_multiplier*1250 < state.funds):
|
||||
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[5].name)
|
||||
return True
|
||||
gbp = get_best_upgrade()
|
||||
if gbp:
|
||||
game_layer.buy_upgrade((gbp[2].X, gbp[2].Y), gbp[1])
|
||||
return True
|
||||
del decision[0]
|
||||
|
||||
return False
|
||||
|
||||
|
||||
@ -199,6 +207,94 @@ def something_needs_attention():
|
||||
return False
|
||||
|
||||
|
||||
def total_income():
|
||||
global state
|
||||
income = 0
|
||||
for residence in state.residences:
|
||||
income += game_layer.get_residence_blueprint(residence.building_name).income_per_pop * residence.current_pop
|
||||
return income
|
||||
|
||||
|
||||
def get_best_upgrade():
|
||||
global state
|
||||
|
||||
best_upgrade = []
|
||||
for residence in state.residences:
|
||||
cbu = calculate_best_upgrade(residence)
|
||||
if cbu is not False:
|
||||
score = cbu[0]
|
||||
upgrade = cbu[1]
|
||||
best_upgrade.append((score, upgrade, residence))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_upgrade.sort(reverse=True, key=sort_key)
|
||||
if not best_upgrade:
|
||||
return False
|
||||
return best_upgrade[0]
|
||||
|
||||
|
||||
def calculate_best_upgrade(current_building):
|
||||
global state
|
||||
|
||||
rounds_left = 700 - state.turn
|
||||
current_pop = current_building.current_pop
|
||||
blueprint = game_layer.get_blueprint(current_building.building_name)
|
||||
base_energy_need = blueprint.base_energy_need
|
||||
best_upgrade = []
|
||||
for upgrade in state.available_upgrades:
|
||||
effect = game_layer.get_effect(upgrade.effect)
|
||||
if (upgrade.name not in current_building.effects) and ((total_income() + effect.building_income_increase) > 50) and (money_reserve_multiplier*upgrade.cost < state.funds):
|
||||
average_outdoor_temp = (state.max_temp - state.min_temp)/2
|
||||
|
||||
average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity * effect.emissivity_multiplier) / 0.75)
|
||||
old_average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity) / 0.75)
|
||||
|
||||
lifetime_energy = (base_energy_need + effect.base_energy_mwh_increase + average_heating_energy - effect.mwh_production) * rounds_left
|
||||
old_lifetime_energy = (base_energy_need + old_average_heating_energy) * rounds_left
|
||||
|
||||
|
||||
upgrade_co2 = (effect.co2_per_pop_increase * 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
|
||||
old_co2 = 0.03 * current_pop * rounds_left + (0.1 * old_lifetime_energy / 1000)
|
||||
co2 = upgrade_co2 - old_co2
|
||||
max_happiness = effect.max_happiness_increase * rounds_left
|
||||
|
||||
score = max_happiness/10 - co2
|
||||
best_upgrade.append((score, upgrade.name))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_upgrade.sort(reverse=True, key=sort_key)
|
||||
if not best_upgrade:
|
||||
return False
|
||||
return best_upgrade[0]
|
||||
|
||||
|
||||
def calculate_best_residence():
|
||||
global state
|
||||
|
||||
rounds_left = 700 - state.turn
|
||||
best_residence = []
|
||||
for residence_blueprint in state.available_residence_buildings:
|
||||
if state.turn >= residence_blueprint.release_tick and (money_reserve_multiplier*residence_blueprint.cost < state.funds):
|
||||
average_outdoor_temp = (state.max_temp - state.min_temp)/2
|
||||
average_heating_energy = ((0 - 0.04 * residence_blueprint.max_pop + (21 - average_outdoor_temp) * residence_blueprint.emissivity) / 0.75)
|
||||
lifetime_energy = (residence_blueprint.base_energy_need + average_heating_energy) * rounds_left
|
||||
|
||||
co2 = 0.03 * residence_blueprint.max_pop * rounds_left + residence_blueprint.co2_cost + (0.1 * lifetime_energy / 1000)
|
||||
max_happiness = residence_blueprint.max_happiness * rounds_left
|
||||
|
||||
score = residence_blueprint.max_pop*15 + max_happiness/10 - co2
|
||||
best_residence.append((score, residence_blueprint.building_name))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_residence.sort(reverse=True, key=sort_key)
|
||||
if not best_residence:
|
||||
return False
|
||||
return best_residence[0]
|
||||
|
||||
|
||||
def chart_map():
|
||||
global state
|
||||
for x in range(len(state.map) - 1):
|
||||
|
Reference in New Issue
Block a user