decision logic, income, best upgrade/residence functions

This commit is contained in:
Thefeli73 2020-10-06 05:06:04 +02:00
parent 9ae3b54c41
commit 1bb5ba898d

124
main.py
View File

@ -13,6 +13,7 @@ game_layer = GameLayer(api_key)
# settings
time_until_run_ends = 70
utilities = 3
money_reserve_multiplier = 1.5
def main():
@ -118,12 +119,12 @@ def develop_society():
# priority scores, 1 = very urgent, 0 = not urgent at all
# queue modifier * funds modifier * existing houses modifier
build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (1 - (7500 / state.funds)) * (1 - (len(state.residences) / (len(available_tiles)-utilities)))
build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (1 - (7500 / (1 + state.funds))) * (1 - (len(state.residences) / (1 + len(available_tiles) - utilities)))
upgrade_residence_score = 0
# existing houses modifier * funds modifier * existing utilities modifier
build_utility_score = (len(state.residences) / (len(available_tiles)-utilities)) * (1 - (16000 / state.funds)) * (1 - (len(state.utilities) / utilities))
build_utility_score = (len(state.residences) / (1 + len(available_tiles)-utilities)) * (1 - (16000 / (1 + state.funds))) * (1 - (len(state.utilities) / utilities))
# turn modifier * funds modifier
build_upgrade_score = (1 - (state.turn / 700)) * (2 - (15000 / state.funds))
build_upgrade_score = (1 - (state.turn / 700)) * (2 - (15000 / (1 + state.funds)))
if len(state.residences) < 1:
build_residence_score = 100
@ -137,28 +138,35 @@ def develop_society():
def sort_key(e):
return e[1]
decision.sort(reverse=True, key=sort_key)
print(decision)
for i in range(4):
if decision[0][0] == "build_residence": # build housing
queue_timeout = 5
if len(state.residences) < len(state.available_residence_buildings):
return build(state.available_residence_buildings[len(state.residences)].building_name)
else:
calculate_residence_score()
#if len(state.residences) < len(state.available_residence_buildings):
# return build(state.available_residence_buildings[len(state.residences)].building_name)
#else:
cbr = calculate_best_residence()
if cbr:
return build(cbr[1])
if decision[0][0] == "build_utility": # build utilities
return build("WindTurbine")
#return build("WindTurbine")
pass
if decision[0][0] == "upgrade_residence": # build utilities
pass
if decision[0][0] == "build_upgrade": # build upgrades
for i in range(6):
for residence in state.residences:
if state.available_upgrades[i].name not in residence.effects:
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[i].name)
if state.available_upgrades[0].name not in residence.effects and (money_reserve_multiplier*3500 < state.funds) and ((total_income() - 6) > 50):
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[0].name)
return True
if state.available_upgrades[5].name not in residence.effects and (money_reserve_multiplier*1250 < state.funds):
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[5].name)
return True
gbp = get_best_upgrade()
if gbp:
game_layer.buy_upgrade((gbp[2].X, gbp[2].Y), gbp[1])
return True
del decision[0]
return False
@ -199,6 +207,94 @@ def something_needs_attention():
return False
def total_income():
global state
income = 0
for residence in state.residences:
income += game_layer.get_residence_blueprint(residence.building_name).income_per_pop * residence.current_pop
return income
def get_best_upgrade():
global state
best_upgrade = []
for residence in state.residences:
cbu = calculate_best_upgrade(residence)
if cbu is not False:
score = cbu[0]
upgrade = cbu[1]
best_upgrade.append((score, upgrade, residence))
def sort_key(e):
return e[0]
best_upgrade.sort(reverse=True, key=sort_key)
if not best_upgrade:
return False
return best_upgrade[0]
def calculate_best_upgrade(current_building):
global state
rounds_left = 700 - state.turn
current_pop = current_building.current_pop
blueprint = game_layer.get_blueprint(current_building.building_name)
base_energy_need = blueprint.base_energy_need
best_upgrade = []
for upgrade in state.available_upgrades:
effect = game_layer.get_effect(upgrade.effect)
if (upgrade.name not in current_building.effects) and ((total_income() + effect.building_income_increase) > 50) and (money_reserve_multiplier*upgrade.cost < state.funds):
average_outdoor_temp = (state.max_temp - state.min_temp)/2
average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity * effect.emissivity_multiplier) / 0.75)
old_average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity) / 0.75)
lifetime_energy = (base_energy_need + effect.base_energy_mwh_increase + average_heating_energy - effect.mwh_production) * rounds_left
old_lifetime_energy = (base_energy_need + old_average_heating_energy) * rounds_left
upgrade_co2 = (effect.co2_per_pop_increase * 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
old_co2 = 0.03 * current_pop * rounds_left + (0.1 * old_lifetime_energy / 1000)
co2 = upgrade_co2 - old_co2
max_happiness = effect.max_happiness_increase * rounds_left
score = max_happiness/10 - co2
best_upgrade.append((score, upgrade.name))
def sort_key(e):
return e[0]
best_upgrade.sort(reverse=True, key=sort_key)
if not best_upgrade:
return False
return best_upgrade[0]
def calculate_best_residence():
global state
rounds_left = 700 - state.turn
best_residence = []
for residence_blueprint in state.available_residence_buildings:
if state.turn >= residence_blueprint.release_tick and (money_reserve_multiplier*residence_blueprint.cost < state.funds):
average_outdoor_temp = (state.max_temp - state.min_temp)/2
average_heating_energy = ((0 - 0.04 * residence_blueprint.max_pop + (21 - average_outdoor_temp) * residence_blueprint.emissivity) / 0.75)
lifetime_energy = (residence_blueprint.base_energy_need + average_heating_energy) * rounds_left
co2 = 0.03 * residence_blueprint.max_pop * rounds_left + residence_blueprint.co2_cost + (0.1 * lifetime_energy / 1000)
max_happiness = residence_blueprint.max_happiness * rounds_left
score = residence_blueprint.max_pop*15 + max_happiness/10 - co2
best_residence.append((score, residence_blueprint.building_name))
def sort_key(e):
return e[0]
best_residence.sort(reverse=True, key=sort_key)
if not best_residence:
return False
return best_residence[0]
def chart_map():
global state
for x in range(len(state.map) - 1):