HS 7800. massa helper functions, calculate best util, tile score, etc

This commit is contained in:
Thefeli73 2020-10-07 06:00:35 +02:00
parent cc693ee83d
commit 3e20b79fa3

130
main.py
View File

@ -14,8 +14,7 @@ game_layer = GameLayer(api_key)
# settings # settings
use_regulator = False use_regulator = False
other_upgrade_threshold = 0.25 other_upgrade_threshold = 0.25
time_until_run_ends = 70 time_until_run_ends = 90
utilities = 3
money_reserve_multiplier = 1 money_reserve_multiplier = 1
@ -76,32 +75,32 @@ def take_turn():
def develop_society(): def develop_society():
global state, queue_timeout, available_tiles, utilities, money_reserve_multiplier global state, queue_timeout, available_tiles, money_reserve_multiplier
queue_reset = 10 queue_reset = 5
if queue_timeout > 1: if queue_timeout > 1:
queue_timeout -= 1 queue_timeout -= 1
best_residence = calculate_best_residence() best_residence = calculate_best_residence()
best_utility = calculate_best_utility()
best_upgrade = get_best_upgrade() best_upgrade = get_best_upgrade()
build_residence_score = 0 build_residence_score = 0
build_utility_score = 0
build_upgrade_score = 0 build_upgrade_score = 0
# priority scores, 1 = very urgent, 0 = not urgent at all # priority scores, 1 = very urgent, 0 = not urgent at all
# queue modifier * funds modifier * existing houses modifier
# build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (state.funds/(money_reserve_multiplier * 18000)) * (1 - (len(state.residences) / (1 + len(available_tiles) - utilities)))
if len(state.residences) < 1: if len(state.residences) < 1:
build_residence_score = 100 build_residence_score = 1000
elif state.housing_queue < 5: elif (current_tot_pop() - max_tot_pop() + state.housing_queue) < 0:
build_residence_score = 0 build_residence_score = 0
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) > 15 and queue_timeout <= 0:
build_residence_score = 1000
elif best_residence: elif best_residence:
build_residence_score = best_residence[0] # * (state.housing_queue / (15 * queue_timeout)) build_residence_score = best_residence[0] # * (state.housing_queue / (15 * queue_timeout))
elif state.housing_queue > 15 and queue_timeout <= 0:
build_residence_score = 100
# #
upgrade_residence_score = 0 upgrade_residence_score = 0
# existing houses modifier * funds modifier * existing utilities modifier #
build_utility_score = (len(state.residences) / (1 + len(available_tiles)-utilities)) * (1 - (16000 / (1 + state.funds))) * (1 - (len(state.utilities) / utilities)) if best_utility:
# turn modifier * funds modifier build_utility_score = best_utility[0]
# build_upgrade_score = (1 - (state.turn / 700)) * (state.funds/(money_reserve_multiplier * 7200)) #
if best_upgrade: if best_upgrade:
build_upgrade_score = best_upgrade[0] build_upgrade_score = best_upgrade[0]
@ -115,15 +114,16 @@ def develop_society():
def sort_key(e): def sort_key(e):
return e[1] return e[1]
decision.sort(reverse=True, key=sort_key) decision.sort(reverse=True, key=sort_key)
print(decision) # print(decision)
if decision[0][1] >= 0: if decision[0][1] >= 0:
if decision[0][0] == "build_residence": # build housing if decision[0][0] == "build_residence": # build housing
queue_timeout = queue_reset
if best_residence: if best_residence:
queue_timeout = queue_reset
return build(best_residence[1]) return build(best_residence[1])
if decision[0][0] == "build_utility": # build utilities if decision[0][0] == "build_utility": # build utilities
#return build("WindTurbine") if best_utility:
pass return build_place(best_utility[1], best_utility[2])
if decision[0][0] == "upgrade_residence": # upgrade housing if decision[0][0] == "upgrade_residence": # upgrade housing
pass pass
if decision[0][0] == "build_upgrade": # build upgrades if decision[0][0] == "build_upgrade": # build upgrades
@ -168,7 +168,7 @@ def something_needs_attention():
return True return True
elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100): elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100):
game_layer.build((building_under_construction[0], building_under_construction[1])) game_layer.build((building_under_construction[0], building_under_construction[1]))
if not state.residences[building_under_construction[2]].build_progress < 100: if not state.utilities[building_under_construction[2]].build_progress < 100:
building_under_construction = None building_under_construction = None
return True return True
else: else:
@ -178,6 +178,22 @@ def something_needs_attention():
return False return False
def max_tot_pop():
global state
max_pop = 0
for residence in state.residences:
max_pop += game_layer.get_blueprint(residence.building_name).max_pop
return max_pop
def current_tot_pop():
global state
current_pop = 0
for residence in state.residences:
current_pop += residence.current_pop
return current_pop
def total_income(): def total_income():
global state global state
income = 0 income = 0
@ -231,6 +247,7 @@ def calculate_best_upgrade(current_building):
max_happiness = effect.max_happiness_increase * current_pop * rounds_left max_happiness = effect.max_happiness_increase * current_pop * rounds_left
score = max_happiness/10 - co2 score = max_happiness/10 - co2
# score = score / upgrade.cost
best_upgrade.append((score, upgrade.name)) best_upgrade.append((score, upgrade.name))
def sort_key(e): def sort_key(e):
@ -241,6 +258,38 @@ def calculate_best_upgrade(current_building):
return best_upgrade[0] return best_upgrade[0]
def calculate_best_utility():
global state, money_reserve_multiplier
rounds_left = 700 - state.turn
best_utility = []
for utility_blueprint in state.available_utility_buildings:
if state.turn >= utility_blueprint.release_tick and (money_reserve_multiplier*utility_blueprint.cost < state.funds):
for i in range(len(available_tiles)):
if isinstance(available_tiles[i], tuple):
score = 0
cost = utility_blueprint.cost
for effect_name in utility_blueprint.effects:
effect = game_layer.get_effect(effect_name)
affected_people = tile_score(available_tiles[i], effect.radius)[0]
affected_buildings = tile_score(available_tiles[i], effect.radius)[1]
cost -= effect.building_income_increase * rounds_left
happiness_increase = affected_people * effect.max_happiness_increase * rounds_left
co2 = affected_people * effect.co2_per_pop_increase * rounds_left - effect.mwh_production * affected_buildings
score = happiness_increase / 10 - co2
# score = score / cost
best_utility.append((score, utility_blueprint.building_name, i))
def sort_key(e):
return e[0]
best_utility.sort(reverse=True, key=sort_key)
if not best_utility:
return False
return best_utility[0]
def calculate_best_residence(): def calculate_best_residence():
global state, money_reserve_multiplier global state, money_reserve_multiplier
@ -256,6 +305,7 @@ def calculate_best_residence():
max_happiness = residence_blueprint.max_happiness * residence_blueprint.max_pop * rounds_left max_happiness = residence_blueprint.max_happiness * residence_blueprint.max_pop * rounds_left
score = residence_blueprint.max_pop*15 + max_happiness/10 - co2 score = residence_blueprint.max_pop*15 + max_happiness/10 - co2
# score = score / residence_blueprint.cost
best_residence.append((score, residence_blueprint.building_name)) best_residence.append((score, residence_blueprint.building_name))
def sort_key(e): def sort_key(e):
@ -275,6 +325,21 @@ def chart_map():
optimize_available_tiles() optimize_available_tiles()
def tile_score(tile, radius):
global state
affected_people = 0
affected_buildings = 0
# send back # of max people in radius
for residence in state.residences:
delta_x = abs(tile[0] - residence.X)
delta_y = abs(tile[1] - residence.Y)
distance = delta_x + delta_y
if distance <= radius:
affected_people += residence.current_pop
affected_buildings += 1
return affected_people, affected_buildings
def optimize_available_tiles(): def optimize_available_tiles():
global average_x, average_y, score_list global average_x, average_y, score_list
average_x = 0 average_x = 0
@ -322,6 +387,32 @@ def adjust_energy(current_building):
return False return False
def build_place(structure, i):
global building_under_construction, rounds_between_energy, state
if isinstance(available_tiles[i], tuple):
game_layer.place_foundation(available_tiles[i], structure)
for building in state.available_residence_buildings:
if structure in building.building_name:
for j in range(len(state.residences)):
building = state.residences[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
rounds_between_energy = len(state.residences)+2
return True
for building in state.available_utility_buildings:
if structure in building.building_name:
for j in range(len(state.utilities)):
building = state.utilities[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
return True
return False
def build(structure): def build(structure):
global building_under_construction, rounds_between_energy, state global building_under_construction, rounds_between_energy, state
for i in range(len(available_tiles)): for i in range(len(available_tiles)):
@ -345,7 +436,6 @@ def build(structure):
if coords_to_check == available_tiles[i]: if coords_to_check == available_tiles[i]:
available_tiles[i] = building available_tiles[i] = building
building_under_construction = (building.X, building.Y, j) building_under_construction = (building.X, building.Y, j)
rounds_between_energy = len(state.residences)+2
return True return True
return False return False