HS 7800. massa helper functions, calculate best util, tile score, etc
This commit is contained in:
parent
cc693ee83d
commit
3e20b79fa3
130
main.py
130
main.py
@ -14,8 +14,7 @@ game_layer = GameLayer(api_key)
|
|||||||
# settings
|
# settings
|
||||||
use_regulator = False
|
use_regulator = False
|
||||||
other_upgrade_threshold = 0.25
|
other_upgrade_threshold = 0.25
|
||||||
time_until_run_ends = 70
|
time_until_run_ends = 90
|
||||||
utilities = 3
|
|
||||||
money_reserve_multiplier = 1
|
money_reserve_multiplier = 1
|
||||||
|
|
||||||
|
|
||||||
@ -76,32 +75,32 @@ def take_turn():
|
|||||||
|
|
||||||
|
|
||||||
def develop_society():
|
def develop_society():
|
||||||
global state, queue_timeout, available_tiles, utilities, money_reserve_multiplier
|
global state, queue_timeout, available_tiles, money_reserve_multiplier
|
||||||
queue_reset = 10
|
queue_reset = 5
|
||||||
if queue_timeout > 1:
|
if queue_timeout > 1:
|
||||||
queue_timeout -= 1
|
queue_timeout -= 1
|
||||||
|
|
||||||
best_residence = calculate_best_residence()
|
best_residence = calculate_best_residence()
|
||||||
|
best_utility = calculate_best_utility()
|
||||||
best_upgrade = get_best_upgrade()
|
best_upgrade = get_best_upgrade()
|
||||||
build_residence_score = 0
|
build_residence_score = 0
|
||||||
|
build_utility_score = 0
|
||||||
build_upgrade_score = 0
|
build_upgrade_score = 0
|
||||||
# priority scores, 1 = very urgent, 0 = not urgent at all
|
# priority scores, 1 = very urgent, 0 = not urgent at all
|
||||||
# queue modifier * funds modifier * existing houses modifier
|
|
||||||
# build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (state.funds/(money_reserve_multiplier * 18000)) * (1 - (len(state.residences) / (1 + len(available_tiles) - utilities)))
|
|
||||||
if len(state.residences) < 1:
|
if len(state.residences) < 1:
|
||||||
build_residence_score = 100
|
build_residence_score = 1000
|
||||||
elif state.housing_queue < 5:
|
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) < 0:
|
||||||
build_residence_score = 0
|
build_residence_score = 0
|
||||||
|
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) > 15 and queue_timeout <= 0:
|
||||||
|
build_residence_score = 1000
|
||||||
elif best_residence:
|
elif best_residence:
|
||||||
build_residence_score = best_residence[0] # * (state.housing_queue / (15 * queue_timeout))
|
build_residence_score = best_residence[0] # * (state.housing_queue / (15 * queue_timeout))
|
||||||
elif state.housing_queue > 15 and queue_timeout <= 0:
|
|
||||||
build_residence_score = 100
|
|
||||||
#
|
#
|
||||||
upgrade_residence_score = 0
|
upgrade_residence_score = 0
|
||||||
# existing houses modifier * funds modifier * existing utilities modifier
|
#
|
||||||
build_utility_score = (len(state.residences) / (1 + len(available_tiles)-utilities)) * (1 - (16000 / (1 + state.funds))) * (1 - (len(state.utilities) / utilities))
|
if best_utility:
|
||||||
# turn modifier * funds modifier
|
build_utility_score = best_utility[0]
|
||||||
# build_upgrade_score = (1 - (state.turn / 700)) * (state.funds/(money_reserve_multiplier * 7200))
|
#
|
||||||
if best_upgrade:
|
if best_upgrade:
|
||||||
build_upgrade_score = best_upgrade[0]
|
build_upgrade_score = best_upgrade[0]
|
||||||
|
|
||||||
@ -115,15 +114,16 @@ def develop_society():
|
|||||||
def sort_key(e):
|
def sort_key(e):
|
||||||
return e[1]
|
return e[1]
|
||||||
decision.sort(reverse=True, key=sort_key)
|
decision.sort(reverse=True, key=sort_key)
|
||||||
print(decision)
|
# print(decision)
|
||||||
|
|
||||||
if decision[0][1] >= 0:
|
if decision[0][1] >= 0:
|
||||||
if decision[0][0] == "build_residence": # build housing
|
if decision[0][0] == "build_residence": # build housing
|
||||||
queue_timeout = queue_reset
|
|
||||||
if best_residence:
|
if best_residence:
|
||||||
|
queue_timeout = queue_reset
|
||||||
return build(best_residence[1])
|
return build(best_residence[1])
|
||||||
if decision[0][0] == "build_utility": # build utilities
|
if decision[0][0] == "build_utility": # build utilities
|
||||||
#return build("WindTurbine")
|
if best_utility:
|
||||||
pass
|
return build_place(best_utility[1], best_utility[2])
|
||||||
if decision[0][0] == "upgrade_residence": # upgrade housing
|
if decision[0][0] == "upgrade_residence": # upgrade housing
|
||||||
pass
|
pass
|
||||||
if decision[0][0] == "build_upgrade": # build upgrades
|
if decision[0][0] == "build_upgrade": # build upgrades
|
||||||
@ -168,7 +168,7 @@ def something_needs_attention():
|
|||||||
return True
|
return True
|
||||||
elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100):
|
elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100):
|
||||||
game_layer.build((building_under_construction[0], building_under_construction[1]))
|
game_layer.build((building_under_construction[0], building_under_construction[1]))
|
||||||
if not state.residences[building_under_construction[2]].build_progress < 100:
|
if not state.utilities[building_under_construction[2]].build_progress < 100:
|
||||||
building_under_construction = None
|
building_under_construction = None
|
||||||
return True
|
return True
|
||||||
else:
|
else:
|
||||||
@ -178,6 +178,22 @@ def something_needs_attention():
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def max_tot_pop():
|
||||||
|
global state
|
||||||
|
max_pop = 0
|
||||||
|
for residence in state.residences:
|
||||||
|
max_pop += game_layer.get_blueprint(residence.building_name).max_pop
|
||||||
|
return max_pop
|
||||||
|
|
||||||
|
|
||||||
|
def current_tot_pop():
|
||||||
|
global state
|
||||||
|
current_pop = 0
|
||||||
|
for residence in state.residences:
|
||||||
|
current_pop += residence.current_pop
|
||||||
|
return current_pop
|
||||||
|
|
||||||
|
|
||||||
def total_income():
|
def total_income():
|
||||||
global state
|
global state
|
||||||
income = 0
|
income = 0
|
||||||
@ -231,6 +247,7 @@ def calculate_best_upgrade(current_building):
|
|||||||
max_happiness = effect.max_happiness_increase * current_pop * rounds_left
|
max_happiness = effect.max_happiness_increase * current_pop * rounds_left
|
||||||
|
|
||||||
score = max_happiness/10 - co2
|
score = max_happiness/10 - co2
|
||||||
|
# score = score / upgrade.cost
|
||||||
best_upgrade.append((score, upgrade.name))
|
best_upgrade.append((score, upgrade.name))
|
||||||
|
|
||||||
def sort_key(e):
|
def sort_key(e):
|
||||||
@ -241,6 +258,38 @@ def calculate_best_upgrade(current_building):
|
|||||||
return best_upgrade[0]
|
return best_upgrade[0]
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_best_utility():
|
||||||
|
global state, money_reserve_multiplier
|
||||||
|
|
||||||
|
rounds_left = 700 - state.turn
|
||||||
|
best_utility = []
|
||||||
|
for utility_blueprint in state.available_utility_buildings:
|
||||||
|
if state.turn >= utility_blueprint.release_tick and (money_reserve_multiplier*utility_blueprint.cost < state.funds):
|
||||||
|
for i in range(len(available_tiles)):
|
||||||
|
if isinstance(available_tiles[i], tuple):
|
||||||
|
score = 0
|
||||||
|
cost = utility_blueprint.cost
|
||||||
|
for effect_name in utility_blueprint.effects:
|
||||||
|
effect = game_layer.get_effect(effect_name)
|
||||||
|
affected_people = tile_score(available_tiles[i], effect.radius)[0]
|
||||||
|
affected_buildings = tile_score(available_tiles[i], effect.radius)[1]
|
||||||
|
cost -= effect.building_income_increase * rounds_left
|
||||||
|
happiness_increase = affected_people * effect.max_happiness_increase * rounds_left
|
||||||
|
co2 = affected_people * effect.co2_per_pop_increase * rounds_left - effect.mwh_production * affected_buildings
|
||||||
|
score = happiness_increase / 10 - co2
|
||||||
|
# score = score / cost
|
||||||
|
best_utility.append((score, utility_blueprint.building_name, i))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def sort_key(e):
|
||||||
|
return e[0]
|
||||||
|
best_utility.sort(reverse=True, key=sort_key)
|
||||||
|
if not best_utility:
|
||||||
|
return False
|
||||||
|
return best_utility[0]
|
||||||
|
|
||||||
|
|
||||||
def calculate_best_residence():
|
def calculate_best_residence():
|
||||||
global state, money_reserve_multiplier
|
global state, money_reserve_multiplier
|
||||||
|
|
||||||
@ -256,6 +305,7 @@ def calculate_best_residence():
|
|||||||
max_happiness = residence_blueprint.max_happiness * residence_blueprint.max_pop * rounds_left
|
max_happiness = residence_blueprint.max_happiness * residence_blueprint.max_pop * rounds_left
|
||||||
|
|
||||||
score = residence_blueprint.max_pop*15 + max_happiness/10 - co2
|
score = residence_blueprint.max_pop*15 + max_happiness/10 - co2
|
||||||
|
# score = score / residence_blueprint.cost
|
||||||
best_residence.append((score, residence_blueprint.building_name))
|
best_residence.append((score, residence_blueprint.building_name))
|
||||||
|
|
||||||
def sort_key(e):
|
def sort_key(e):
|
||||||
@ -275,6 +325,21 @@ def chart_map():
|
|||||||
optimize_available_tiles()
|
optimize_available_tiles()
|
||||||
|
|
||||||
|
|
||||||
|
def tile_score(tile, radius):
|
||||||
|
global state
|
||||||
|
affected_people = 0
|
||||||
|
affected_buildings = 0
|
||||||
|
# send back # of max people in radius
|
||||||
|
for residence in state.residences:
|
||||||
|
delta_x = abs(tile[0] - residence.X)
|
||||||
|
delta_y = abs(tile[1] - residence.Y)
|
||||||
|
distance = delta_x + delta_y
|
||||||
|
if distance <= radius:
|
||||||
|
affected_people += residence.current_pop
|
||||||
|
affected_buildings += 1
|
||||||
|
return affected_people, affected_buildings
|
||||||
|
|
||||||
|
|
||||||
def optimize_available_tiles():
|
def optimize_available_tiles():
|
||||||
global average_x, average_y, score_list
|
global average_x, average_y, score_list
|
||||||
average_x = 0
|
average_x = 0
|
||||||
@ -322,6 +387,32 @@ def adjust_energy(current_building):
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def build_place(structure, i):
|
||||||
|
global building_under_construction, rounds_between_energy, state
|
||||||
|
if isinstance(available_tiles[i], tuple):
|
||||||
|
game_layer.place_foundation(available_tiles[i], structure)
|
||||||
|
for building in state.available_residence_buildings:
|
||||||
|
if structure in building.building_name:
|
||||||
|
for j in range(len(state.residences)):
|
||||||
|
building = state.residences[j]
|
||||||
|
coords_to_check = (building.X, building.Y)
|
||||||
|
if coords_to_check == available_tiles[i]:
|
||||||
|
available_tiles[i] = building
|
||||||
|
building_under_construction = (building.X, building.Y, j)
|
||||||
|
rounds_between_energy = len(state.residences)+2
|
||||||
|
return True
|
||||||
|
for building in state.available_utility_buildings:
|
||||||
|
if structure in building.building_name:
|
||||||
|
for j in range(len(state.utilities)):
|
||||||
|
building = state.utilities[j]
|
||||||
|
coords_to_check = (building.X, building.Y)
|
||||||
|
if coords_to_check == available_tiles[i]:
|
||||||
|
available_tiles[i] = building
|
||||||
|
building_under_construction = (building.X, building.Y, j)
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
def build(structure):
|
def build(structure):
|
||||||
global building_under_construction, rounds_between_energy, state
|
global building_under_construction, rounds_between_energy, state
|
||||||
for i in range(len(available_tiles)):
|
for i in range(len(available_tiles)):
|
||||||
@ -345,7 +436,6 @@ def build(structure):
|
|||||||
if coords_to_check == available_tiles[i]:
|
if coords_to_check == available_tiles[i]:
|
||||||
available_tiles[i] = building
|
available_tiles[i] = building
|
||||||
building_under_construction = (building.X, building.Y, j)
|
building_under_construction = (building.X, building.Y, j)
|
||||||
rounds_between_energy = len(state.residences)+2
|
|
||||||
return True
|
return True
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user