PID logic completed but not implemented, constants need tuning

This commit is contained in:
linhara 2020-10-07 00:46:35 +02:00
commit b80df9cd4f

508
main.py
View File

@ -9,59 +9,78 @@ import traceback
api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3" api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3"
# The different map names can be found on considition.com/rules # The different map names can be found on considition.com/rules
map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected. map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected.
game_layer = GameLayer(api_key) game_layer = GameLayer(api_key)
state = game_layer.game_state # settings
usePrebuiltStrategy = False time_until_run_ends = 70
timeUntilRunEnds = 50
rounds_between_energy = 5
utilities = 3 utilities = 3
money_reserve_multiplier = 1.5
EMA_temp = None desiredTemperature = 21
building_under_construction = None #logresidence[i][x] = temperatur nr X i byggnad med index i (andra byggnaden), samma i som state.residences
availableTiles = [] logResidenceInfo = []
PID_Ivalues = []
def main(): def main():
#game_layer.force_end_game() global EMA_temp, rounds_between_energy, building_under_construction, available_tiles, state, queue_timeout
# global vars
rounds_between_energy = 5
EMA_temp = None
building_under_construction = None
available_tiles = []
queue_timeout = 1
game_layer.new_game(map_name) game_layer.new_game(map_name)
print("Starting game: " + game_layer.game_state.game_id) print("Starting game: " + game_layer.game_state.game_id)
game_layer.start_game() game_layer.start_game()
# exit game after timeout # start timeout timer
start_time = time.time() start_time = time.time()
chartMap() state = game_layer.game_state
global EMA_temp chart_map()
while game_layer.game_state.turn < game_layer.game_state.max_turns:
while state.turn < state.max_turns:
state = game_layer.game_state
try: try:
if EMA_temp is None: if EMA_temp is None:
EMA_temp = game_layer.game_state.current_temp EMA_temp = state.current_temp
ema_k_value = (2/(rounds_between_energy+1)) ema_k_value = (2/(rounds_between_energy+1))
EMA_temp = game_layer.game_state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value) EMA_temp = state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value)
take_turn() take_turn()
except: recordTempHistories(state.residences)
except Exception:
print(traceback.format_exc()) print(traceback.format_exc())
game_layer.end_game() game_layer.end_game()
exit() exit()
time_diff = time.time() - start_time time_diff = time.time() - start_time
if time_diff > timeUntilRunEnds: if time_diff > time_until_run_ends:
game_layer.end_game() game_layer.end_game()
exit() exit()
print("Done with game: " + game_layer.game_state.game_id) print("Done with game: " + state.game_id)
print("Final score was: " + str(game_layer.get_score()["finalScore"])) print("Final score was: " + str(game_layer.get_score()["finalScore"]))
return (state.game_id, game_layer.get_score()["finalScore"])
def linus_take_turn():
freeSpace = []
state = game_layer.game_state def take_turn():
for x in range(len(state.map)-1): global state
for y in range(len(state.map)-1): # TODO Implement your artificial intelligence here.
if state.map[x][y] == 0: # TODO Take one action per turn until the game ends.
freeSpace.append((x,y)) # TODO The following is a short example of how to use the StarterKit
if something_needs_attention():
pass
elif develop_society():
pass
else:
game_layer.wait()
# messages and errors for console log
for message in state.messages:
print(message)
for error in state.errors:
print("Error: " + error)
#if (i == 0 or i%5 == 0)and i<26: #if (i == 0 or i%5 == 0)and i<26:
# game_layer.place_foundation(freeSpace[(i//5)+2], game_layer.game_state.available_residence_buildings[i//5].building_name) # game_layer.place_foundation(freeSpace[(i//5)+2], game_layer.game_state.available_residence_buildings[i//5].building_name)
'''
if (game_layer.game_state.turn == 0): if (game_layer.game_state.turn == 0):
game_layer.place_foundation(freeSpace[2], game_layer.game_state.available_residence_buildings[0].building_name) game_layer.place_foundation(freeSpace[2], game_layer.game_state.available_residence_buildings[0].building_name)
the_first_residence = state.residences[0] the_first_residence = state.residences[0]
@ -143,43 +162,6 @@ def linus_take_turn():
adjustEnergy(the_fifth_residence) adjustEnergy(the_fifth_residence)
elif (game_layer.game_state.turn % rounds_between_energy == 5): elif (game_layer.game_state.turn % rounds_between_energy == 5):
adjustEnergy(the_sixth_residence) adjustEnergy(the_sixth_residence)
else:
# messages and errors for console log
game_layer.wait()
for message in game_layer.game_state.messages:
print(message)
for error in game_layer.game_state.errors:
print("Error: " + error)
def take_turn():
if not usePrebuiltStrategy:
# TODO Implement your artificial intelligence here.
# TODO Take one action per turn until the game ends.
# TODO The following is a short example of how to use the StarterKit
if something_needs_attention():
pass
else:
develop_society()
# messages and errors for console log
for message in game_layer.game_state.messages:
print(message)
for error in game_layer.game_state.errors:
print("Error: " + error)
# pre-made test strategy
# which came with
# starter kit
if usePrebuiltStrategy:
state = game_layer.game_state
if len(state.residences) < 1:
for i in range(len(state.map)):
for j in range(len(state.map)):
if state.map[i][j] == 0:
x = i
y = j
break
game_layer.place_foundation((x, y), game_layer.game_state.available_residence_buildings[0].building_name)
else: else:
the_only_residence = state.residences[0] the_only_residence = state.residences[0]
if the_only_residence.build_progress < 100: if the_only_residence.build_progress < 100:
@ -206,72 +188,97 @@ def take_turn():
print(message) print(message)
for error in game_layer.game_state.errors: for error in game_layer.game_state.errors:
print("Error: " + error) print("Error: " + error)
'''
def chartMap(): def develop_society():
state = game_layer.game_state global state, queue_timeout, available_tiles, utilities
for x in range(len(state.map) - 1): if queue_timeout > 1:
for y in range(len(state.map) - 1): queue_timeout -= 1
if state.map[x][y] == 0:
availableTiles.append((x, y))
optimizeAvailableTiles()
def adjustEnergy(currentBuilding):
global rounds_between_energy
global EMA_temp
blueprint = game_layer.get_residence_blueprint(currentBuilding.building_name)
outDoorTemp = game_layer.game_state.current_temp * 2 - EMA_temp
temp_acceleration = (2*(21 - currentBuilding.temperature)/(rounds_between_energy))
effectiveEnergyIn = ((temp_acceleration - 0.04 * currentBuilding.current_pop + (currentBuilding.temperature - outDoorTemp) * blueprint.emissivity) / 0.75) + blueprint.base_energy_need
if effectiveEnergyIn > blueprint.base_energy_need:
game_layer.adjust_energy_level((currentBuilding.X, currentBuilding.Y), effectiveEnergyIn)
elif effectiveEnergyIn < blueprint.base_energy_need:
game_layer.adjust_energy_level((currentBuilding.X, currentBuilding.Y), blueprint.base_energy_need + 0.01)
else:
print("you did it!")
game_layer.wait()
# priority scores, 1 = very urgent, 0 = not urgent at all
# queue modifier * funds modifier * existing houses modifier
build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (1 - (7500 / (1 + state.funds))) * (1 - (len(state.residences) / (1 + len(available_tiles) - utilities)))
upgrade_residence_score = 0
# existing houses modifier * funds modifier * existing utilities modifier
build_utility_score = (len(state.residences) / (1 + len(available_tiles)-utilities)) * (1 - (16000 / (1 + state.funds))) * (1 - (len(state.utilities) / utilities))
# turn modifier * funds modifier
build_upgrade_score = (1 - (state.turn / 700)) * (2 - (15000 / (1 + state.funds)))
if len(state.residences) < 1:
build_residence_score = 100
decision = [
('build_residence', build_residence_score),
('upgrade_residence', upgrade_residence_score),
('build_utility', build_utility_score),
('build_upgrade', build_upgrade_score)
]
def sort_key(e):
return e[1]
decision.sort(reverse=True, key=sort_key)
def optimizeAvailableTiles(): for i in range(4):
#hitta #utilities antal bästa platser i mitten av smeten och sätt de först, sätt allt runt dem i ordning så närmast är längst fram i listan if decision[0][0] == "build_residence": # build housing
queue_timeout = 5
#if len(state.residences) < len(state.available_residence_buildings):
# return build(state.available_residence_buildings[len(state.residences)].building_name)
#else:
cbr = calculate_best_residence()
if cbr:
return build(cbr[1])
if decision[0][0] == "build_utility": # build utilities
#return build("WindTurbine")
pass pass
if decision[0][0] == "upgrade_residence": # build utilities
pass
if decision[0][0] == "build_upgrade": # build upgrades
for residence in state.residences:
if state.available_upgrades[0].name not in residence.effects and (money_reserve_multiplier*3500 < state.funds) and ((total_income() - 6) > 50):
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[0].name)
return True
if state.available_upgrades[5].name not in residence.effects and (money_reserve_multiplier*1250 < state.funds):
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[5].name)
return True
gbp = get_best_upgrade()
if gbp:
game_layer.buy_upgrade((gbp[2].X, gbp[2].Y), gbp[1])
return True
del decision[0]
return False
def something_needs_attention(): def something_needs_attention():
print("Checking for emergencies") global building_under_construction, edit_temp, maintain, state, rounds_between_energy
global building_under_construction
global edit_temp
global maintain
state = game_layer.game_state
#check if temp needs adjusting # check if temp needs adjusting
edit_temp = (False, 0) edit_temp = (False, 0)
# check if need for maintenance
maintain = (False, 0)
for i in range(len(state.residences)): for i in range(len(state.residences)):
if state.residences[i].health < 35+rounds_between_energy*game_layer.get_residence_blueprint(state.residences[i].building_name).decay_rate:
maintain = (True, i)
if (state.turn % rounds_between_energy == i) and not state.residences[i].build_progress < 100: if (state.turn % rounds_between_energy == i) and not state.residences[i].build_progress < 100:
edit_temp = (True, i) edit_temp = (True, i)
#check if need for maintainance if maintain[0]: # check maintenance
maintain = (False, 0)
for i in range(len(state.residences)):
if state.residences[i].health < 41+rounds_between_energy*game_layer.get_residence_blueprint(state.residences[i].building_name).decay_rate:
maintain = (True, i)
if maintain[0]:
game_layer.maintenance((state.residences[maintain[1]].X, state.residences[maintain[1]].Y)) game_layer.maintenance((state.residences[maintain[1]].X, state.residences[maintain[1]].Y))
return True return True
elif edit_temp[0]: #adjust temp of building elif edit_temp[0]: # adjust temp of buildings
adjustEnergy(state.residences[edit_temp[1]]) return adjust_energy(state.residences[edit_temp[1]])
return True elif building_under_construction is not None: # finish construction
elif building_under_construction is not None: #finish construction if (len(state.residences)-1 >= building_under_construction[2]) and (state.residences[building_under_construction[2]].build_progress < 100):
print(building_under_construction)
if game_layer.game_state.residences[building_under_construction[2]].build_progress < 100: # TODO: inte ba kolla residence utan också utility
game_layer.build((building_under_construction[0], building_under_construction[1])) game_layer.build((building_under_construction[0], building_under_construction[1]))
if not state.residences[building_under_construction[2]].build_progress < 100:
building_under_construction = None
return True
elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100):
game_layer.build((building_under_construction[0], building_under_construction[1]))
if not state.residences[building_under_construction[2]].build_progress < 100:
building_under_construction = None
return True return True
else: else:
building_under_construction = None building_under_construction = None
@ -279,44 +286,277 @@ def something_needs_attention():
else: else:
return False return False
def develop_society():
state = game_layer.game_state def total_income():
if len(game_layer.game_state.residences) < 4: global state
build("Apartments") income = 0
elif len(game_layer.game_state.utilities) <1: for residence in state.residences:
game_layer.place_foundation((3,6), "WindTurbine") income += game_layer.get_residence_blueprint(residence.building_name).income_per_pop * residence.current_pop
elif (state.utilities[0].build_progress < 100): return income
game_layer.build((3,6))
elif state.funds > 25000 and len(game_layer.game_state.residences) < 7:
build("HighRise") def get_best_upgrade():
global state
best_upgrade = []
for residence in state.residences:
cbu = calculate_best_upgrade(residence)
if cbu is not False:
score = cbu[0]
upgrade = cbu[1]
best_upgrade.append((score, upgrade, residence))
def sort_key(e):
return e[0]
best_upgrade.sort(reverse=True, key=sort_key)
if not best_upgrade:
return False
return best_upgrade[0]
def calculate_best_upgrade(current_building):
global state
rounds_left = 700 - state.turn
current_pop = current_building.current_pop
blueprint = game_layer.get_blueprint(current_building.building_name)
base_energy_need = blueprint.base_energy_need
best_upgrade = []
for upgrade in state.available_upgrades:
effect = game_layer.get_effect(upgrade.effect)
if (upgrade.name not in current_building.effects) and ((total_income() + effect.building_income_increase) > 50) and (money_reserve_multiplier*upgrade.cost < state.funds):
average_outdoor_temp = (state.max_temp - state.min_temp)/2
average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity * effect.emissivity_multiplier) / 0.75)
old_average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity) / 0.75)
lifetime_energy = (base_energy_need + effect.base_energy_mwh_increase + average_heating_energy - effect.mwh_production) * rounds_left
old_lifetime_energy = (base_energy_need + old_average_heating_energy) * rounds_left
upgrade_co2 = (effect.co2_per_pop_increase * 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
old_co2 = 0.03 * current_pop * rounds_left + (0.1 * old_lifetime_energy / 1000)
co2 = upgrade_co2 - old_co2
max_happiness = effect.max_happiness_increase * rounds_left
score = max_happiness/10 - co2
best_upgrade.append((score, upgrade.name))
def sort_key(e):
return e[0]
best_upgrade.sort(reverse=True, key=sort_key)
if not best_upgrade:
return False
return best_upgrade[0]
def calculate_best_residence():
global state
rounds_left = 700 - state.turn
best_residence = []
for residence_blueprint in state.available_residence_buildings:
if state.turn >= residence_blueprint.release_tick and (money_reserve_multiplier*residence_blueprint.cost < state.funds):
average_outdoor_temp = (state.max_temp - state.min_temp)/2
average_heating_energy = ((0 - 0.04 * residence_blueprint.max_pop + (21 - average_outdoor_temp) * residence_blueprint.emissivity) / 0.75)
lifetime_energy = (residence_blueprint.base_energy_need + average_heating_energy) * rounds_left
co2 = 0.03 * residence_blueprint.max_pop * rounds_left + residence_blueprint.co2_cost + (0.1 * lifetime_energy / 1000)
max_happiness = residence_blueprint.max_happiness * rounds_left
score = residence_blueprint.max_pop*15 + max_happiness/10 - co2
best_residence.append((score, residence_blueprint.building_name))
def sort_key(e):
return e[0]
best_residence.sort(reverse=True, key=sort_key)
if not best_residence:
return False
return best_residence[0]
def chart_map():
global state
for x in range(len(state.map) - 1):
for y in range(len(state.map) - 1):
if state.map[x][y] == 0:
available_tiles.append((x, y))
optimize_available_tiles()
def evaluateTile(tile):
# score -1 för att ta bort själva tilen man checkar
score = -1
x = tile[0]
y = tile[1]
for i in range(5):
for j in range(5):
if state.map[x - 2 + i][y - 2 + i] and abs(i - 2) + abs(j - 2) <= 2:
score += 1
def optimize_available_tiles():
global average_x, average_y, score_list
average_x = 0
average_y = 0
score_list = []
for tile in available_tiles: # calc average coordinates
average_x += tile[0]
average_y += tile[1]
average_x /= len(available_tiles)
average_y /= len(available_tiles)
for tile in available_tiles:
tile_score = abs(tile[0] - average_x) + abs(tile[1] - average_y)
score_list.append((tile_score, tile))
def sort_key(e):
return e[0]
score_list.sort(key=sort_key)
for i in range(len(score_list)):
available_tiles[i] = score_list[i][1]
print("average x,y: " + str(average_x) + ", " + str(average_y))
def adjust_energy(current_building):
global rounds_between_energy, EMA_temp, state
blueprint = game_layer.get_residence_blueprint(current_building.building_name)
base_energy = blueprint.base_energy_need
if "Charger" in current_building.effects:
base_energy += 1.8
emissivity = blueprint.emissivity
if "Insulation" in current_building.effects:
emissivity *= 0.6
outDoorTemp = state.current_temp * 2 - EMA_temp
temp_acceleration = (2*(21 - current_building.temperature)/(rounds_between_energy))
effectiveEnergyIn = ((temp_acceleration - 0.04 * current_building.current_pop + (current_building.temperature - outDoorTemp) * emissivity) / 0.75) + base_energy
if effectiveEnergyIn > base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), effectiveEnergyIn)
return True
elif effectiveEnergyIn < base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01)
return True
else: else:
game_layer.wait() return False
def build(structure): def build(structure):
print("Building " + structure) global building_under_construction, rounds_between_energy, state
state = game_layer.game_state # print("Building " + structure)
global building_under_construction for i in range(len(available_tiles)):
global rounds_between_energy if isinstance(available_tiles[i], tuple):
for i in range(len(availableTiles)): game_layer.place_foundation(available_tiles[i], structure)
if isinstance(availableTiles[i], tuple): for building in state.available_residence_buildings:
game_layer.place_foundation(availableTiles[i], structure) if structure in building.building_name:
for j in range(len(state.residences)): for j in range(len(state.residences)):
building = state.residences[j] building = state.residences[j]
coords_to_check = (building.X, building.Y) coords_to_check = (building.X, building.Y)
if coords_to_check == availableTiles[i]: if coords_to_check == available_tiles[i]:
availableTiles[i] = building available_tiles[i] = building
building_under_construction = (building.X, building.Y, j) building_under_construction = (building.X, building.Y, j)
rounds_between_energy = len(state.residences)+5 rounds_between_energy = len(state.residences)+2
return True return True
for building in state.available_utility_buildings:
if structure in building.building_name:
for j in range(len(state.utilities)): for j in range(len(state.utilities)):
building = state.utilities[j] building = state.utilities[j]
coords_to_check = (building.X, building.Y) coords_to_check = (building.X, building.Y)
if coords_to_check == availableTiles[i]: if coords_to_check == available_tiles[i]:
availableTiles[i] = building available_tiles[i] = building
building_under_construction = (building.X, building.Y, j) building_under_construction = (building.X, building.Y, j)
rounds_between_energy = len(state.residences)+5 rounds_between_energy = len(state.residences)+2
return True return True
return False
def check_energies(buildings):
for building in enumerate(buildings):
if not 19 < building[1].temperature < 23:
adjust_energy_PID(building[0], building[1])
return False
def adjust_energy_PID(index, current_building):
newEnergy = 0
blueprint = game_layer.get_residence_blueprint(current_building.building_name)
base_energy = blueprint.base_energy_need
global state, desiredTemperature, PID_Ivalues
KP, KI, KD = getBuildingConstants(current_building.building_name)
P = (desiredTemperature - current_building.temperature) * KP
I = current_building.I + (
desiredTemperature - current_building.temperature) * KI # TODO fixa current_bulding.I PID_Ivalues listan
D = calcCurrentD(logResidenceInfo[index]) * KD # jag är genius
newEnergy = P + I + D
if newEnergy + base_energy < base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01)
return True
elif newEnergy + base_energy > base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), newEnergy + base_energy)
return True
else:
return False
def calcCurrentD(tmp_history):
# måste hitta necessaryDenominator för nytt nrDerivativeDots
ans = 0
consts = [-2, -1, 0, 1, 2]
nrDerivativeDots = 5 # endast udda antal
necessaryDenominator = 10
# for currDerivativeConstant in (range(-1*(nrDerivativeDots//2), (nrDerivativeDots//2)+1)): #+1 pga non-inclusive
for i in range(5):
ans += tmp_history[i] * consts[i]
return ans / necessaryDenominator
def recordTempHistories(buildings):
global logResidenceInfo, PID_Ivalues
while len(logResidenceInfo) < len(buildings):
logResidenceInfo.append([])
while len(PID_Ivalues) < len(buildings):
PID_Ivalues.append(3) # nu blir 3 I värdets start value på alla byggnader
for building in enumerate(buildings):
logResidenceInfo[building[0]].append(building[1].temperature)
# testHouse = buildings[0]
# testHouse.a = 1
# logResidenceInfo[0].append(testHouse.temperature)
# for building in buildings:
# building.tmp_History.append(building.temperature)
# f = open("tempLog.txt", "a+")
# f.write(str(game_layer.game_state.turn))
# f.write("; ")
# f.write(str(logResidenceInfo[0][-1]))
# f.write("; ")
# f.write(str(game_layer.game_state.current_temp))
# f.write("; ")
# if game_layer.game_state.turn > 5:
# d = calcCurrentD(logResidenceInfo[0][-5:])
# f.write(str(d))
# f.write("\r")
# f.close()
# if state.turn == 30:
# print(logResidenceInfo[0])
# for building in buildings:
# building.tmp_History.append(building.temperature)
def getBuildingConstants(building_name):
valuesDict = {"Apartments": (0.1, 0.3, 0.3), "ModernApartments": (0.1, 0.3, 0.3), "Cabin": (0.1, 0.3, 0.3),
"EnvironmentalHouse": (0.1, 0.3, 0.3), "HighRise": (0.1, 0.3, 0.3),
"LuxuryResidence": (0.1, 0.3, 0.3)}
return valuesDict.get(building_name)
if __name__ == "__main__": if __name__ == "__main__":
main() main()