PID logic completed but not implemented, constants need tuning
This commit is contained in:
commit
b80df9cd4f
504
main.py
504
main.py
@ -9,59 +9,78 @@ import traceback
|
||||
api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3"
|
||||
# The different map names can be found on considition.com/rules
|
||||
map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected.
|
||||
|
||||
game_layer = GameLayer(api_key)
|
||||
state = game_layer.game_state
|
||||
usePrebuiltStrategy = False
|
||||
timeUntilRunEnds = 50
|
||||
rounds_between_energy = 5
|
||||
# settings
|
||||
time_until_run_ends = 70
|
||||
utilities = 3
|
||||
|
||||
EMA_temp = None
|
||||
building_under_construction = None
|
||||
availableTiles = []
|
||||
money_reserve_multiplier = 1.5
|
||||
desiredTemperature = 21
|
||||
#logresidence[i][x] = temperatur nr X i byggnad med index i (andra byggnaden), samma i som state.residences
|
||||
logResidenceInfo = []
|
||||
PID_Ivalues = []
|
||||
|
||||
|
||||
def main():
|
||||
#game_layer.force_end_game()
|
||||
global EMA_temp, rounds_between_energy, building_under_construction, available_tiles, state, queue_timeout
|
||||
# global vars
|
||||
rounds_between_energy = 5
|
||||
EMA_temp = None
|
||||
building_under_construction = None
|
||||
available_tiles = []
|
||||
queue_timeout = 1
|
||||
|
||||
|
||||
game_layer.new_game(map_name)
|
||||
print("Starting game: " + game_layer.game_state.game_id)
|
||||
game_layer.start_game()
|
||||
# exit game after timeout
|
||||
# start timeout timer
|
||||
start_time = time.time()
|
||||
chartMap()
|
||||
global EMA_temp
|
||||
while game_layer.game_state.turn < game_layer.game_state.max_turns:
|
||||
state = game_layer.game_state
|
||||
chart_map()
|
||||
|
||||
while state.turn < state.max_turns:
|
||||
state = game_layer.game_state
|
||||
try:
|
||||
if EMA_temp is None:
|
||||
EMA_temp = game_layer.game_state.current_temp
|
||||
EMA_temp = state.current_temp
|
||||
ema_k_value = (2/(rounds_between_energy+1))
|
||||
EMA_temp = game_layer.game_state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value)
|
||||
EMA_temp = state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value)
|
||||
take_turn()
|
||||
except:
|
||||
recordTempHistories(state.residences)
|
||||
except Exception:
|
||||
print(traceback.format_exc())
|
||||
game_layer.end_game()
|
||||
exit()
|
||||
time_diff = time.time() - start_time
|
||||
if time_diff > timeUntilRunEnds:
|
||||
if time_diff > time_until_run_ends:
|
||||
game_layer.end_game()
|
||||
exit()
|
||||
print("Done with game: " + game_layer.game_state.game_id)
|
||||
print("Done with game: " + state.game_id)
|
||||
print("Final score was: " + str(game_layer.get_score()["finalScore"]))
|
||||
return (state.game_id, game_layer.get_score()["finalScore"])
|
||||
|
||||
def linus_take_turn():
|
||||
freeSpace = []
|
||||
|
||||
state = game_layer.game_state
|
||||
for x in range(len(state.map)-1):
|
||||
for y in range(len(state.map)-1):
|
||||
if state.map[x][y] == 0:
|
||||
freeSpace.append((x,y))
|
||||
def take_turn():
|
||||
global state
|
||||
# TODO Implement your artificial intelligence here.
|
||||
# TODO Take one action per turn until the game ends.
|
||||
# TODO The following is a short example of how to use the StarterKit
|
||||
if something_needs_attention():
|
||||
pass
|
||||
elif develop_society():
|
||||
pass
|
||||
else:
|
||||
game_layer.wait()
|
||||
|
||||
# messages and errors for console log
|
||||
for message in state.messages:
|
||||
print(message)
|
||||
for error in state.errors:
|
||||
print("Error: " + error)
|
||||
|
||||
#if (i == 0 or i%5 == 0)and i<26:
|
||||
# game_layer.place_foundation(freeSpace[(i//5)+2], game_layer.game_state.available_residence_buildings[i//5].building_name)
|
||||
|
||||
'''
|
||||
if (game_layer.game_state.turn == 0):
|
||||
game_layer.place_foundation(freeSpace[2], game_layer.game_state.available_residence_buildings[0].building_name)
|
||||
the_first_residence = state.residences[0]
|
||||
@ -143,43 +162,6 @@ def linus_take_turn():
|
||||
adjustEnergy(the_fifth_residence)
|
||||
elif (game_layer.game_state.turn % rounds_between_energy == 5):
|
||||
adjustEnergy(the_sixth_residence)
|
||||
else:
|
||||
# messages and errors for console log
|
||||
game_layer.wait()
|
||||
for message in game_layer.game_state.messages:
|
||||
print(message)
|
||||
for error in game_layer.game_state.errors:
|
||||
print("Error: " + error)
|
||||
|
||||
def take_turn():
|
||||
if not usePrebuiltStrategy:
|
||||
# TODO Implement your artificial intelligence here.
|
||||
# TODO Take one action per turn until the game ends.
|
||||
# TODO The following is a short example of how to use the StarterKit
|
||||
if something_needs_attention():
|
||||
pass
|
||||
else:
|
||||
develop_society()
|
||||
# messages and errors for console log
|
||||
for message in game_layer.game_state.messages:
|
||||
print(message)
|
||||
for error in game_layer.game_state.errors:
|
||||
print("Error: " + error)
|
||||
|
||||
|
||||
# pre-made test strategy
|
||||
# which came with
|
||||
# starter kit
|
||||
if usePrebuiltStrategy:
|
||||
state = game_layer.game_state
|
||||
if len(state.residences) < 1:
|
||||
for i in range(len(state.map)):
|
||||
for j in range(len(state.map)):
|
||||
if state.map[i][j] == 0:
|
||||
x = i
|
||||
y = j
|
||||
break
|
||||
game_layer.place_foundation((x, y), game_layer.game_state.available_residence_buildings[0].building_name)
|
||||
else:
|
||||
the_only_residence = state.residences[0]
|
||||
if the_only_residence.build_progress < 100:
|
||||
@ -206,72 +188,97 @@ def take_turn():
|
||||
print(message)
|
||||
for error in game_layer.game_state.errors:
|
||||
print("Error: " + error)
|
||||
'''
|
||||
|
||||
|
||||
def chartMap():
|
||||
state = game_layer.game_state
|
||||
for x in range(len(state.map) - 1):
|
||||
for y in range(len(state.map) - 1):
|
||||
if state.map[x][y] == 0:
|
||||
availableTiles.append((x, y))
|
||||
optimizeAvailableTiles()
|
||||
|
||||
def adjustEnergy(currentBuilding):
|
||||
global rounds_between_energy
|
||||
global EMA_temp
|
||||
blueprint = game_layer.get_residence_blueprint(currentBuilding.building_name)
|
||||
outDoorTemp = game_layer.game_state.current_temp * 2 - EMA_temp
|
||||
|
||||
temp_acceleration = (2*(21 - currentBuilding.temperature)/(rounds_between_energy))
|
||||
|
||||
effectiveEnergyIn = ((temp_acceleration - 0.04 * currentBuilding.current_pop + (currentBuilding.temperature - outDoorTemp) * blueprint.emissivity) / 0.75) + blueprint.base_energy_need
|
||||
|
||||
if effectiveEnergyIn > blueprint.base_energy_need:
|
||||
game_layer.adjust_energy_level((currentBuilding.X, currentBuilding.Y), effectiveEnergyIn)
|
||||
elif effectiveEnergyIn < blueprint.base_energy_need:
|
||||
game_layer.adjust_energy_level((currentBuilding.X, currentBuilding.Y), blueprint.base_energy_need + 0.01)
|
||||
else:
|
||||
print("you did it!")
|
||||
game_layer.wait()
|
||||
def develop_society():
|
||||
global state, queue_timeout, available_tiles, utilities
|
||||
if queue_timeout > 1:
|
||||
queue_timeout -= 1
|
||||
|
||||
|
||||
# priority scores, 1 = very urgent, 0 = not urgent at all
|
||||
# queue modifier * funds modifier * existing houses modifier
|
||||
build_residence_score = (state.housing_queue / (15 * queue_timeout)) * (1 - (7500 / (1 + state.funds))) * (1 - (len(state.residences) / (1 + len(available_tiles) - utilities)))
|
||||
upgrade_residence_score = 0
|
||||
# existing houses modifier * funds modifier * existing utilities modifier
|
||||
build_utility_score = (len(state.residences) / (1 + len(available_tiles)-utilities)) * (1 - (16000 / (1 + state.funds))) * (1 - (len(state.utilities) / utilities))
|
||||
# turn modifier * funds modifier
|
||||
build_upgrade_score = (1 - (state.turn / 700)) * (2 - (15000 / (1 + state.funds)))
|
||||
|
||||
if len(state.residences) < 1:
|
||||
build_residence_score = 100
|
||||
|
||||
decision = [
|
||||
('build_residence', build_residence_score),
|
||||
('upgrade_residence', upgrade_residence_score),
|
||||
('build_utility', build_utility_score),
|
||||
('build_upgrade', build_upgrade_score)
|
||||
]
|
||||
def sort_key(e):
|
||||
return e[1]
|
||||
decision.sort(reverse=True, key=sort_key)
|
||||
|
||||
def optimizeAvailableTiles():
|
||||
#hitta #utilities antal bästa platser i mitten av smeten och sätt de först, sätt allt runt dem i ordning så närmast är längst fram i listan
|
||||
for i in range(4):
|
||||
if decision[0][0] == "build_residence": # build housing
|
||||
queue_timeout = 5
|
||||
#if len(state.residences) < len(state.available_residence_buildings):
|
||||
# return build(state.available_residence_buildings[len(state.residences)].building_name)
|
||||
#else:
|
||||
cbr = calculate_best_residence()
|
||||
if cbr:
|
||||
return build(cbr[1])
|
||||
if decision[0][0] == "build_utility": # build utilities
|
||||
#return build("WindTurbine")
|
||||
pass
|
||||
if decision[0][0] == "upgrade_residence": # build utilities
|
||||
pass
|
||||
if decision[0][0] == "build_upgrade": # build upgrades
|
||||
for residence in state.residences:
|
||||
if state.available_upgrades[0].name not in residence.effects and (money_reserve_multiplier*3500 < state.funds) and ((total_income() - 6) > 50):
|
||||
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[0].name)
|
||||
return True
|
||||
if state.available_upgrades[5].name not in residence.effects and (money_reserve_multiplier*1250 < state.funds):
|
||||
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[5].name)
|
||||
return True
|
||||
gbp = get_best_upgrade()
|
||||
if gbp:
|
||||
game_layer.buy_upgrade((gbp[2].X, gbp[2].Y), gbp[1])
|
||||
return True
|
||||
del decision[0]
|
||||
|
||||
return False
|
||||
|
||||
|
||||
|
||||
def something_needs_attention():
|
||||
print("Checking for emergencies")
|
||||
global building_under_construction
|
||||
global edit_temp
|
||||
global maintain
|
||||
state = game_layer.game_state
|
||||
global building_under_construction, edit_temp, maintain, state, rounds_between_energy
|
||||
|
||||
# check if temp needs adjusting
|
||||
edit_temp = (False, 0)
|
||||
# check if need for maintenance
|
||||
maintain = (False, 0)
|
||||
for i in range(len(state.residences)):
|
||||
if state.residences[i].health < 35+rounds_between_energy*game_layer.get_residence_blueprint(state.residences[i].building_name).decay_rate:
|
||||
maintain = (True, i)
|
||||
if (state.turn % rounds_between_energy == i) and not state.residences[i].build_progress < 100:
|
||||
edit_temp = (True, i)
|
||||
|
||||
#check if need for maintainance
|
||||
maintain = (False, 0)
|
||||
for i in range(len(state.residences)):
|
||||
if state.residences[i].health < 41+rounds_between_energy*game_layer.get_residence_blueprint(state.residences[i].building_name).decay_rate:
|
||||
maintain = (True, i)
|
||||
|
||||
if maintain[0]:
|
||||
if maintain[0]: # check maintenance
|
||||
game_layer.maintenance((state.residences[maintain[1]].X, state.residences[maintain[1]].Y))
|
||||
return True
|
||||
elif edit_temp[0]: #adjust temp of building
|
||||
adjustEnergy(state.residences[edit_temp[1]])
|
||||
return True
|
||||
elif edit_temp[0]: # adjust temp of buildings
|
||||
return adjust_energy(state.residences[edit_temp[1]])
|
||||
elif building_under_construction is not None: # finish construction
|
||||
print(building_under_construction)
|
||||
if game_layer.game_state.residences[building_under_construction[2]].build_progress < 100: # TODO: inte ba kolla residence utan också utility
|
||||
if (len(state.residences)-1 >= building_under_construction[2]) and (state.residences[building_under_construction[2]].build_progress < 100):
|
||||
game_layer.build((building_under_construction[0], building_under_construction[1]))
|
||||
if not state.residences[building_under_construction[2]].build_progress < 100:
|
||||
building_under_construction = None
|
||||
return True
|
||||
elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100):
|
||||
game_layer.build((building_under_construction[0], building_under_construction[1]))
|
||||
if not state.residences[building_under_construction[2]].build_progress < 100:
|
||||
building_under_construction = None
|
||||
return True
|
||||
else:
|
||||
building_under_construction = None
|
||||
@ -279,44 +286,277 @@ def something_needs_attention():
|
||||
else:
|
||||
return False
|
||||
|
||||
def develop_society():
|
||||
state = game_layer.game_state
|
||||
if len(game_layer.game_state.residences) < 4:
|
||||
build("Apartments")
|
||||
elif len(game_layer.game_state.utilities) <1:
|
||||
game_layer.place_foundation((3,6), "WindTurbine")
|
||||
elif (state.utilities[0].build_progress < 100):
|
||||
game_layer.build((3,6))
|
||||
elif state.funds > 25000 and len(game_layer.game_state.residences) < 7:
|
||||
build("HighRise")
|
||||
|
||||
def total_income():
|
||||
global state
|
||||
income = 0
|
||||
for residence in state.residences:
|
||||
income += game_layer.get_residence_blueprint(residence.building_name).income_per_pop * residence.current_pop
|
||||
return income
|
||||
|
||||
|
||||
def get_best_upgrade():
|
||||
global state
|
||||
|
||||
best_upgrade = []
|
||||
for residence in state.residences:
|
||||
cbu = calculate_best_upgrade(residence)
|
||||
if cbu is not False:
|
||||
score = cbu[0]
|
||||
upgrade = cbu[1]
|
||||
best_upgrade.append((score, upgrade, residence))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_upgrade.sort(reverse=True, key=sort_key)
|
||||
if not best_upgrade:
|
||||
return False
|
||||
return best_upgrade[0]
|
||||
|
||||
|
||||
def calculate_best_upgrade(current_building):
|
||||
global state
|
||||
|
||||
rounds_left = 700 - state.turn
|
||||
current_pop = current_building.current_pop
|
||||
blueprint = game_layer.get_blueprint(current_building.building_name)
|
||||
base_energy_need = blueprint.base_energy_need
|
||||
best_upgrade = []
|
||||
for upgrade in state.available_upgrades:
|
||||
effect = game_layer.get_effect(upgrade.effect)
|
||||
if (upgrade.name not in current_building.effects) and ((total_income() + effect.building_income_increase) > 50) and (money_reserve_multiplier*upgrade.cost < state.funds):
|
||||
average_outdoor_temp = (state.max_temp - state.min_temp)/2
|
||||
|
||||
average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity * effect.emissivity_multiplier) / 0.75)
|
||||
old_average_heating_energy = (((21 - average_outdoor_temp) * blueprint.emissivity) / 0.75)
|
||||
|
||||
lifetime_energy = (base_energy_need + effect.base_energy_mwh_increase + average_heating_energy - effect.mwh_production) * rounds_left
|
||||
old_lifetime_energy = (base_energy_need + old_average_heating_energy) * rounds_left
|
||||
|
||||
|
||||
upgrade_co2 = (effect.co2_per_pop_increase * 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
|
||||
old_co2 = 0.03 * current_pop * rounds_left + (0.1 * old_lifetime_energy / 1000)
|
||||
co2 = upgrade_co2 - old_co2
|
||||
max_happiness = effect.max_happiness_increase * rounds_left
|
||||
|
||||
score = max_happiness/10 - co2
|
||||
best_upgrade.append((score, upgrade.name))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_upgrade.sort(reverse=True, key=sort_key)
|
||||
if not best_upgrade:
|
||||
return False
|
||||
return best_upgrade[0]
|
||||
|
||||
|
||||
def calculate_best_residence():
|
||||
global state
|
||||
|
||||
rounds_left = 700 - state.turn
|
||||
best_residence = []
|
||||
for residence_blueprint in state.available_residence_buildings:
|
||||
if state.turn >= residence_blueprint.release_tick and (money_reserve_multiplier*residence_blueprint.cost < state.funds):
|
||||
average_outdoor_temp = (state.max_temp - state.min_temp)/2
|
||||
average_heating_energy = ((0 - 0.04 * residence_blueprint.max_pop + (21 - average_outdoor_temp) * residence_blueprint.emissivity) / 0.75)
|
||||
lifetime_energy = (residence_blueprint.base_energy_need + average_heating_energy) * rounds_left
|
||||
|
||||
co2 = 0.03 * residence_blueprint.max_pop * rounds_left + residence_blueprint.co2_cost + (0.1 * lifetime_energy / 1000)
|
||||
max_happiness = residence_blueprint.max_happiness * rounds_left
|
||||
|
||||
score = residence_blueprint.max_pop*15 + max_happiness/10 - co2
|
||||
best_residence.append((score, residence_blueprint.building_name))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
best_residence.sort(reverse=True, key=sort_key)
|
||||
if not best_residence:
|
||||
return False
|
||||
return best_residence[0]
|
||||
|
||||
|
||||
def chart_map():
|
||||
global state
|
||||
for x in range(len(state.map) - 1):
|
||||
for y in range(len(state.map) - 1):
|
||||
if state.map[x][y] == 0:
|
||||
available_tiles.append((x, y))
|
||||
optimize_available_tiles()
|
||||
|
||||
|
||||
def evaluateTile(tile):
|
||||
# score -1 för att ta bort själva tilen man checkar
|
||||
score = -1
|
||||
x = tile[0]
|
||||
y = tile[1]
|
||||
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
if state.map[x - 2 + i][y - 2 + i] and abs(i - 2) + abs(j - 2) <= 2:
|
||||
score += 1
|
||||
|
||||
|
||||
def optimize_available_tiles():
|
||||
global average_x, average_y, score_list
|
||||
average_x = 0
|
||||
average_y = 0
|
||||
score_list = []
|
||||
for tile in available_tiles: # calc average coordinates
|
||||
average_x += tile[0]
|
||||
average_y += tile[1]
|
||||
average_x /= len(available_tiles)
|
||||
average_y /= len(available_tiles)
|
||||
for tile in available_tiles:
|
||||
tile_score = abs(tile[0] - average_x) + abs(tile[1] - average_y)
|
||||
score_list.append((tile_score, tile))
|
||||
|
||||
def sort_key(e):
|
||||
return e[0]
|
||||
score_list.sort(key=sort_key)
|
||||
for i in range(len(score_list)):
|
||||
available_tiles[i] = score_list[i][1]
|
||||
print("average x,y: " + str(average_x) + ", " + str(average_y))
|
||||
|
||||
|
||||
def adjust_energy(current_building):
|
||||
global rounds_between_energy, EMA_temp, state
|
||||
blueprint = game_layer.get_residence_blueprint(current_building.building_name)
|
||||
base_energy = blueprint.base_energy_need
|
||||
if "Charger" in current_building.effects:
|
||||
base_energy += 1.8
|
||||
|
||||
emissivity = blueprint.emissivity
|
||||
if "Insulation" in current_building.effects:
|
||||
emissivity *= 0.6
|
||||
|
||||
outDoorTemp = state.current_temp * 2 - EMA_temp
|
||||
temp_acceleration = (2*(21 - current_building.temperature)/(rounds_between_energy))
|
||||
|
||||
effectiveEnergyIn = ((temp_acceleration - 0.04 * current_building.current_pop + (current_building.temperature - outDoorTemp) * emissivity) / 0.75) + base_energy
|
||||
|
||||
if effectiveEnergyIn > base_energy:
|
||||
game_layer.adjust_energy_level((current_building.X, current_building.Y), effectiveEnergyIn)
|
||||
return True
|
||||
elif effectiveEnergyIn < base_energy:
|
||||
game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01)
|
||||
return True
|
||||
else:
|
||||
game_layer.wait()
|
||||
return False
|
||||
|
||||
|
||||
def build(structure):
|
||||
print("Building " + structure)
|
||||
state = game_layer.game_state
|
||||
global building_under_construction
|
||||
global rounds_between_energy
|
||||
for i in range(len(availableTiles)):
|
||||
if isinstance(availableTiles[i], tuple):
|
||||
game_layer.place_foundation(availableTiles[i], structure)
|
||||
global building_under_construction, rounds_between_energy, state
|
||||
# print("Building " + structure)
|
||||
for i in range(len(available_tiles)):
|
||||
if isinstance(available_tiles[i], tuple):
|
||||
game_layer.place_foundation(available_tiles[i], structure)
|
||||
for building in state.available_residence_buildings:
|
||||
if structure in building.building_name:
|
||||
for j in range(len(state.residences)):
|
||||
building = state.residences[j]
|
||||
coords_to_check = (building.X, building.Y)
|
||||
if coords_to_check == availableTiles[i]:
|
||||
availableTiles[i] = building
|
||||
if coords_to_check == available_tiles[i]:
|
||||
available_tiles[i] = building
|
||||
building_under_construction = (building.X, building.Y, j)
|
||||
rounds_between_energy = len(state.residences)+5
|
||||
rounds_between_energy = len(state.residences)+2
|
||||
return True
|
||||
for building in state.available_utility_buildings:
|
||||
if structure in building.building_name:
|
||||
for j in range(len(state.utilities)):
|
||||
building = state.utilities[j]
|
||||
coords_to_check = (building.X, building.Y)
|
||||
if coords_to_check == availableTiles[i]:
|
||||
availableTiles[i] = building
|
||||
if coords_to_check == available_tiles[i]:
|
||||
available_tiles[i] = building
|
||||
building_under_construction = (building.X, building.Y, j)
|
||||
rounds_between_energy = len(state.residences)+5
|
||||
rounds_between_energy = len(state.residences)+2
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def check_energies(buildings):
|
||||
for building in enumerate(buildings):
|
||||
if not 19 < building[1].temperature < 23:
|
||||
adjust_energy_PID(building[0], building[1])
|
||||
return False
|
||||
|
||||
|
||||
def adjust_energy_PID(index, current_building):
|
||||
newEnergy = 0
|
||||
blueprint = game_layer.get_residence_blueprint(current_building.building_name)
|
||||
base_energy = blueprint.base_energy_need
|
||||
global state, desiredTemperature, PID_Ivalues
|
||||
KP, KI, KD = getBuildingConstants(current_building.building_name)
|
||||
|
||||
P = (desiredTemperature - current_building.temperature) * KP
|
||||
I = current_building.I + (
|
||||
desiredTemperature - current_building.temperature) * KI # TODO fixa current_bulding.I PID_Ivalues listan
|
||||
D = calcCurrentD(logResidenceInfo[index]) * KD # jag är genius
|
||||
|
||||
newEnergy = P + I + D
|
||||
|
||||
if newEnergy + base_energy < base_energy:
|
||||
game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01)
|
||||
return True
|
||||
elif newEnergy + base_energy > base_energy:
|
||||
game_layer.adjust_energy_level((current_building.X, current_building.Y), newEnergy + base_energy)
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def calcCurrentD(tmp_history):
|
||||
# måste hitta necessaryDenominator för nytt nrDerivativeDots
|
||||
ans = 0
|
||||
consts = [-2, -1, 0, 1, 2]
|
||||
nrDerivativeDots = 5 # endast udda antal
|
||||
necessaryDenominator = 10
|
||||
# for currDerivativeConstant in (range(-1*(nrDerivativeDots//2), (nrDerivativeDots//2)+1)): #+1 pga non-inclusive
|
||||
for i in range(5):
|
||||
ans += tmp_history[i] * consts[i]
|
||||
|
||||
return ans / necessaryDenominator
|
||||
|
||||
|
||||
def recordTempHistories(buildings):
|
||||
global logResidenceInfo, PID_Ivalues
|
||||
while len(logResidenceInfo) < len(buildings):
|
||||
logResidenceInfo.append([])
|
||||
while len(PID_Ivalues) < len(buildings):
|
||||
PID_Ivalues.append(3) # nu blir 3 I värdets start value på alla byggnader
|
||||
|
||||
for building in enumerate(buildings):
|
||||
logResidenceInfo[building[0]].append(building[1].temperature)
|
||||
|
||||
# testHouse = buildings[0]
|
||||
# testHouse.a = 1
|
||||
# logResidenceInfo[0].append(testHouse.temperature)
|
||||
|
||||
# for building in buildings:
|
||||
# building.tmp_History.append(building.temperature)
|
||||
|
||||
# f = open("tempLog.txt", "a+")
|
||||
# f.write(str(game_layer.game_state.turn))
|
||||
# f.write("; ")
|
||||
# f.write(str(logResidenceInfo[0][-1]))
|
||||
# f.write("; ")
|
||||
# f.write(str(game_layer.game_state.current_temp))
|
||||
# f.write("; ")
|
||||
# if game_layer.game_state.turn > 5:
|
||||
# d = calcCurrentD(logResidenceInfo[0][-5:])
|
||||
# f.write(str(d))
|
||||
# f.write("\r")
|
||||
# f.close()
|
||||
|
||||
# if state.turn == 30:
|
||||
# print(logResidenceInfo[0])
|
||||
# for building in buildings:
|
||||
# building.tmp_History.append(building.temperature)
|
||||
|
||||
|
||||
def getBuildingConstants(building_name):
|
||||
valuesDict = {"Apartments": (0.1, 0.3, 0.3), "ModernApartments": (0.1, 0.3, 0.3), "Cabin": (0.1, 0.3, 0.3),
|
||||
"EnvironmentalHouse": (0.1, 0.3, 0.3), "HighRise": (0.1, 0.3, 0.3),
|
||||
"LuxuryResidence": (0.1, 0.3, 0.3)}
|
||||
return valuesDict.get(building_name)
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Reference in New Issue
Block a user