This repository has been archived on 2023-12-31. You can view files and clone it, but cannot push or open issues or pull requests.
Considition-2020/main.py

500 lines
20 KiB
Python
Raw Normal View History

2020-09-27 16:53:45 +02:00
# import api
import time
import sys
from sys import exit
2020-09-27 13:46:19 +02:00
from game_layer import GameLayer
2020-10-04 03:15:32 +02:00
import game_state
2020-10-03 19:34:41 +02:00
import traceback
import random
2020-10-03 19:34:41 +02:00
2020-09-27 16:53:45 +02:00
api_key = "74e3998d-ed3d-4d46-9ea8-6aab2efd8ae3"
2020-09-27 13:46:19 +02:00
# The different map names can be found on considition.com/rules
2020-09-27 16:53:45 +02:00
map_name = "training1" # TODO: You map choice here. If left empty, the map "training1" will be selected.
2020-09-27 14:45:23 +02:00
game_layer = GameLayer(api_key)
# settings
2020-10-08 03:57:17 +02:00
use_regulator = False # turns on if map max temp >21c
2020-10-08 18:11:21 +02:00
other_upgrade_threshold = 0.9
time_until_run_ends = 90
2020-10-08 04:44:03 +02:00
money_reserve_multiplier = 0.5
2020-10-07 20:02:22 +02:00
temp_acc_multiplier = 1.125
2020-10-08 02:50:05 +02:00
rounds_between_energy = 5
2020-10-08 18:11:21 +02:00
round_buffer = 10
2020-10-04 03:15:32 +02:00
# vars
2020-10-08 00:28:16 +02:00
EMA_temp = None
building_under_construction = None
2020-10-08 01:59:16 +02:00
available_tiles = []
2020-10-08 00:28:16 +02:00
state = None
2020-10-08 01:59:16 +02:00
queue_timeout = 1
2020-10-08 00:28:16 +02:00
edit_temp = None
maintain = None
2020-09-27 13:46:19 +02:00
def main():
2020-10-08 03:57:17 +02:00
global EMA_temp, rounds_between_energy, building_under_construction, available_tiles, state, queue_timeout, use_regulator
# global vars
rounds_between_energy = 5
EMA_temp = None
2020-10-08 02:49:39 +02:00
ema_length = 16
building_under_construction = None
2020-10-05 21:21:25 +02:00
available_tiles = []
queue_timeout = 1
2020-09-27 13:46:19 +02:00
game_layer.new_game(map_name)
print("Starting game: " + game_layer.game_state.game_id)
game_layer.start_game()
# start timeout timer
start_time = time.time()
state = game_layer.game_state
chart_map()
2020-10-08 04:44:03 +02:00
if state.max_temp > 21:
2020-10-08 03:57:17 +02:00
use_regulator = True
while state.turn < state.max_turns:
state = game_layer.game_state
try:
2020-10-04 14:23:50 +02:00
if EMA_temp is None:
EMA_temp = state.current_temp
2020-10-08 02:49:39 +02:00
ema_k_value = (2/(ema_length+1))
EMA_temp = state.current_temp * ema_k_value + EMA_temp*(1-ema_k_value)
take_turn()
except Exception:
2020-10-03 19:34:20 +02:00
print(traceback.format_exc())
game_layer.end_game()
exit()
time_diff = time.time() - start_time
if time_diff > time_until_run_ends:
game_layer.end_game()
exit()
print("Done with game: " + state.game_id)
2020-09-27 13:46:19 +02:00
print("Final score was: " + str(game_layer.get_score()["finalScore"]))
return (state.game_id, game_layer.get_score()["finalScore"])
2020-09-27 13:46:19 +02:00
def take_turn():
global state
# TODO Implement your artificial intelligence here.
# TODO Take one action per turn until the game ends.
# TODO The following is a short example of how to use the StarterKit
if something_needs_attention():
pass
2020-10-06 00:18:36 +02:00
elif develop_society():
pass
else:
2020-10-06 00:18:36 +02:00
game_layer.wait()
# messages and errors for console log
for message in state.messages:
print(message)
for error in state.errors:
print("Error: " + error)
2020-09-27 16:54:14 +02:00
2020-10-05 16:43:52 +02:00
def develop_society():
global state, queue_timeout, available_tiles, money_reserve_multiplier
2020-10-07 19:14:26 +02:00
queue_reset = 1
if queue_timeout > 1:
queue_timeout -= 1
best_residence = calculate_best_residence()
best_utility = calculate_best_utility()
best_upgrade = get_best_upgrade()
build_residence_score = 0
build_utility_score = 0
build_upgrade_score = 0
# priority scores, 1 = very urgent, 0 = not urgent at all
if len(state.residences) < 1:
build_residence_score = 1000
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) < 0:
build_residence_score = 0
elif (current_tot_pop() - max_tot_pop() + state.housing_queue) > 15 and queue_timeout <= 0:
build_residence_score = 1000
2020-10-08 04:44:03 +02:00
elif best_residence and best_residence[0] > 0:
build_residence_score = best_residence[0]
#
2020-10-05 20:54:41 +02:00
upgrade_residence_score = 0
#
2020-10-08 04:44:03 +02:00
if best_utility and best_utility[0] > 0:
build_utility_score = best_utility[0]
#
2020-10-08 04:44:03 +02:00
if best_upgrade and best_upgrade[0] > 0:
build_upgrade_score = best_upgrade[0]
2020-10-06 01:49:23 +02:00
decision = [
('build_residence', build_residence_score),
('upgrade_residence', upgrade_residence_score),
('build_utility', build_utility_score),
('build_upgrade', build_upgrade_score)
]
2020-10-06 01:49:23 +02:00
def sort_key(e):
return e[1]
decision.sort(reverse=True, key=sort_key)
2020-10-08 02:00:05 +02:00
print(decision)
if decision[0][1] >= 0:
2020-10-06 01:49:23 +02:00
if decision[0][0] == "build_residence": # build housing
if best_residence:
queue_timeout = queue_reset
2020-10-08 02:00:05 +02:00
if best_residence[2]:
return build_place(best_residence[1], best_residence[2])
else:
return build(best_residence[1])
2020-10-06 01:49:23 +02:00
if decision[0][0] == "build_utility": # build utilities
if best_utility:
return build_place(best_utility[1], best_utility[2])
if decision[0][0] == "upgrade_residence": # upgrade housing
2020-10-06 01:49:23 +02:00
pass
if decision[0][0] == "build_upgrade": # build upgrades
if random.random() < other_upgrade_threshold:
for residence in state.residences:
if state.available_upgrades[0].name not in residence.effects and (money_reserve_multiplier*3500 < state.funds) and ((total_income() - 6) > 50):
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[0].name)
return True
if use_regulator and state.available_upgrades[5].name not in residence.effects and (money_reserve_multiplier*1250 < state.funds):
game_layer.buy_upgrade((residence.X, residence.Y), state.available_upgrades[5].name)
return True
if best_upgrade:
game_layer.buy_upgrade((best_upgrade[2].X, best_upgrade[2].Y), best_upgrade[1])
return True
2020-10-06 01:49:23 +02:00
return False
2020-10-06 00:18:36 +02:00
2020-10-05 16:43:52 +02:00
def something_needs_attention():
global building_under_construction, edit_temp, maintain, state, rounds_between_energy
# check if temp needs adjusting
edit_temp = (False, 0)
# check if need for maintenance
maintain = (False, 0)
for i in range(len(state.residences)):
2020-10-07 17:58:03 +02:00
blueprint = game_layer.get_residence_blueprint(state.residences[i].building_name)
if state.residences[i].health < 40+(max(((blueprint.maintenance_cost - state.funds) / (1+total_income())), 1) * blueprint.decay_rate):
maintain = (True, i)
if (state.turn % rounds_between_energy == i) and not state.residences[i].build_progress < 100:
edit_temp = (True, i)
if maintain[0]: # check maintenance
game_layer.maintenance((state.residences[maintain[1]].X, state.residences[maintain[1]].Y))
return True
elif edit_temp[0]: # adjust temp of buildings
2020-10-05 21:35:34 +02:00
return adjust_energy(state.residences[edit_temp[1]])
elif building_under_construction is not None: # finish construction
if (len(state.residences)-1 >= building_under_construction[2]) and (state.residences[building_under_construction[2]].build_progress < 100):
2020-10-04 17:52:27 +02:00
game_layer.build((building_under_construction[0], building_under_construction[1]))
2020-10-05 19:54:12 +02:00
if not state.residences[building_under_construction[2]].build_progress < 100:
building_under_construction = None
2020-10-04 17:52:27 +02:00
return True
elif (len(state.utilities)-1 >= building_under_construction[2]) and (state.utilities[building_under_construction[2]].build_progress < 100):
2020-10-04 05:00:23 +02:00
game_layer.build((building_under_construction[0], building_under_construction[1]))
if not state.utilities[building_under_construction[2]].build_progress < 100:
2020-10-05 19:54:12 +02:00
building_under_construction = None
2020-10-04 05:00:23 +02:00
return True
else:
building_under_construction = None
return False
else:
return False
2020-10-06 02:02:28 +02:00
def max_tot_pop():
global state
max_pop = 0
for residence in state.residences:
max_pop += game_layer.get_blueprint(residence.building_name).max_pop
return max_pop
def current_tot_pop():
global state
current_pop = 0
for residence in state.residences:
current_pop += residence.current_pop
return current_pop
def total_income():
global state
income = 0
for residence in state.residences:
income += game_layer.get_residence_blueprint(residence.building_name).income_per_pop * residence.current_pop
return income
def get_best_upgrade():
global state
best_upgrade = []
for residence in state.residences:
cbu = calculate_best_upgrade(residence)
if cbu is not False:
score = cbu[0]
upgrade = cbu[1]
best_upgrade.append((score, upgrade, residence))
def sort_key(e):
return e[0]
best_upgrade.sort(reverse=True, key=sort_key)
if not best_upgrade:
return False
return best_upgrade[0]
def calculate_best_upgrade(current_building):
2020-10-06 22:53:27 +02:00
global state, money_reserve_multiplier
rounds_left = 700 - state.turn
current_pop = current_building.current_pop
blueprint = game_layer.get_blueprint(current_building.building_name)
base_energy_need = blueprint.base_energy_need
best_upgrade = []
for upgrade in state.available_upgrades:
effect = game_layer.get_effect(upgrade.effect)
if (upgrade.name not in current_building.effects) and ((total_income() + effect.building_income_increase) > 50) and (money_reserve_multiplier*upgrade.cost < state.funds):
average_outdoor_temp = (state.max_temp - state.min_temp)/2
2020-10-08 04:44:03 +02:00
average_heating_energy = max((((21 - average_outdoor_temp) * blueprint.emissivity * effect.emissivity_multiplier) / 0.75), 0)
old_average_heating_energy = max((((21 - average_outdoor_temp) * blueprint.emissivity) / 0.75), 0)
lifetime_energy = (base_energy_need + effect.base_energy_mwh_increase + average_heating_energy - effect.mwh_production) * rounds_left
old_lifetime_energy = (base_energy_need + old_average_heating_energy) * rounds_left
2020-10-08 03:50:44 +02:00
upgrade_co2 = (effect.co2_per_pop_increase + 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
if "Mall.2" in current_building.effects and upgrade.name == "Charger":
upgrade_co2 = (effect.co2_per_pop_increase - 0.009 + 0.03) * current_pop * rounds_left + (0.1 * lifetime_energy / 1000)
old_co2 = 0.03 * current_pop * rounds_left + (0.1 * old_lifetime_energy / 1000)
co2 = upgrade_co2 - old_co2
max_happiness = effect.max_happiness_increase * current_pop * rounds_left
score = max_happiness/10 - co2
# score = score / upgrade.cost
best_upgrade.append((score, upgrade.name))
def sort_key(e):
return e[0]
best_upgrade.sort(reverse=True, key=sort_key)
if not best_upgrade:
return False
return best_upgrade[0]
def calculate_best_utility():
2020-10-08 02:50:05 +02:00
global state, money_reserve_multiplier, round_buffer
best_utility = []
for utility_blueprint in state.available_utility_buildings:
if state.turn >= utility_blueprint.release_tick and (money_reserve_multiplier*utility_blueprint.cost < state.funds):
2020-10-08 02:50:05 +02:00
rounds_left = 700 - state.turn - (100 / utility_blueprint.build_speed) - round_buffer
for i in range(len(available_tiles)):
if isinstance(available_tiles[i], tuple):
score = 0
cost = utility_blueprint.cost
for effect_name in utility_blueprint.effects:
effect = game_layer.get_effect(effect_name)
affected_people = tile_score(available_tiles[i], effect.radius, effect_name)[0]
affected_buildings = tile_score(available_tiles[i], effect.radius, effect_name)[1]
cost -= effect.building_income_increase * rounds_left
happiness_increase = affected_people * effect.max_happiness_increase * rounds_left
co2 = affected_people * effect.co2_per_pop_increase * rounds_left - effect.mwh_production * affected_buildings * rounds_left
score += happiness_increase / 10 - co2
# print(effect_name + " gave score " + str(score))
# score = score / cost
best_utility.append((score, utility_blueprint.building_name, i))
def sort_key(e):
return e[0]
best_utility.sort(reverse=True, key=sort_key)
# print(best_utility)
if not best_utility:
return False
return best_utility[0]
def calculate_best_residence():
2020-10-08 02:50:05 +02:00
global state, money_reserve_multiplier, round_buffer
best_residence = []
for residence_blueprint in state.available_residence_buildings:
if state.turn >= residence_blueprint.release_tick and (money_reserve_multiplier*residence_blueprint.cost < state.funds):
2020-10-08 02:50:05 +02:00
rounds_left = 700 - state.turn - (100 / residence_blueprint.build_speed) - round_buffer
average_outdoor_temp = (state.max_temp - state.min_temp)/2
average_heating_energy = ((0 - 0.04 * residence_blueprint.max_pop + (21 - average_outdoor_temp) * residence_blueprint.emissivity) / 0.75)
lifetime_energy = (residence_blueprint.base_energy_need + average_heating_energy) * rounds_left
distinct_residences = number_of_distinct_residences(residence_blueprint.building_name)
diversity = 1 + distinct_residences[0]/10
co2 = 0.03 * residence_blueprint.max_pop * rounds_left + residence_blueprint.co2_cost + (0.1 * lifetime_energy / 1000)
max_happiness = residence_blueprint.max_happiness * residence_blueprint.max_pop * rounds_left
max_happiness *= diversity
diversity_bonus = 0
if distinct_residences[1]:
happy = 0
for residence in state.residences:
happy += residence.happiness_per_tick_per_pop * residence.current_pop
diversity_bonus = (happy * rounds_left / 10) / 10
score = residence_blueprint.max_pop*15 + max_happiness / 10 - co2 + diversity_bonus
# score = score / residence_blueprint.cost
2020-10-08 02:00:05 +02:00
# calculate tiles near utils
best_foundation_tile = []
for i in range(len(available_tiles)):
tile = available_tiles[i]
if isinstance(tile, tuple):
for utility in state.utilities:
for effect_name in utility.effects:
effect = game_layer.get_effect(effect_name)
delta_x = abs(tile[0] - utility.X)
delta_y = abs(tile[1] - utility.Y)
distance = delta_x + delta_y
if (distance <= effect.radius):
best_foundation_tile.append((distance, i))
def sort_key(e):
return e[0]
best_foundation_tile.sort(key=sort_key)
if best_foundation_tile:
best_residence.append((score, residence_blueprint.building_name, best_foundation_tile[0][1]))
else:
best_residence.append((score, residence_blueprint.building_name, False))
def sort_key(e):
return e[0]
best_residence.sort(reverse=True, key=sort_key)
if not best_residence:
return False
return best_residence[0]
def number_of_distinct_residences(new_building):
global state
unique_names = []
for residence in state.residences:
if residence.building_name not in unique_names:
unique_names.append(residence.building_name)
if new_building not in unique_names:
unique_names.append(new_building)
return len(unique_names), True
return len(unique_names), False
def chart_map():
global state
for x in range(len(state.map) - 1):
for y in range(len(state.map) - 1):
if state.map[x][y] == 0:
2020-10-05 21:21:25 +02:00
available_tiles.append((x, y))
optimize_available_tiles()
2020-10-07 19:15:31 +02:00
def tile_score(tile, radius, effect):
global state
affected_people = 0
affected_buildings = 0
# send back # of max people in radius
for residence in state.residences:
delta_x = abs(tile[0] - residence.X)
delta_y = abs(tile[1] - residence.Y)
distance = delta_x + delta_y
if (distance <= radius) and effect not in residence.effects:
affected_people += residence.current_pop
affected_buildings += 1
return affected_people, affected_buildings
2020-10-06 02:02:28 +02:00
def optimize_available_tiles():
average_x = 0
average_y = 0
score_list = []
for tile in available_tiles: # calc average coordinates
average_x += tile[0]
average_y += tile[1]
average_x /= len(available_tiles)
average_y /= len(available_tiles)
for tile in available_tiles:
tile_score = abs(tile[0] - average_x) + abs(tile[1] - average_y)
score_list.append((tile_score, tile))
def sort_key(e):
return e[0]
score_list.sort(key=sort_key)
for i in range(len(score_list)):
available_tiles[i] = score_list[i][1]
def adjust_energy(current_building):
2020-10-07 20:02:22 +02:00
global rounds_between_energy, EMA_temp, state, temp_acc_multiplier
blueprint = game_layer.get_residence_blueprint(current_building.building_name)
2020-10-06 01:49:09 +02:00
base_energy = blueprint.base_energy_need
if "Charger" in current_building.effects:
base_energy += 1.8
emissivity = blueprint.emissivity
if "Insulation" in current_building.effects:
emissivity *= 0.6
out_door_temp = state.current_temp * 2 - EMA_temp
temp_acceleration = (2*(21 - current_building.temperature)/rounds_between_energy) * temp_acc_multiplier
effective_energy_in = ((temp_acceleration - 0.04 * current_building.current_pop + (current_building.temperature - out_door_temp) * emissivity) / 0.75) + base_energy
if effective_energy_in > base_energy:
game_layer.adjust_energy_level((current_building.X, current_building.Y), effective_energy_in)
2020-10-05 21:35:34 +02:00
return True
elif effective_energy_in < base_energy:
2020-10-06 01:49:09 +02:00
game_layer.adjust_energy_level((current_building.X, current_building.Y), base_energy + 0.01)
2020-10-05 21:35:34 +02:00
return True
else:
2020-10-05 21:35:34 +02:00
return False
def build_place(structure, i):
global building_under_construction, rounds_between_energy, state
if isinstance(available_tiles[i], tuple):
game_layer.place_foundation(available_tiles[i], structure)
2020-10-07 20:02:47 +02:00
for j in range(len(state.residences)):
building = state.residences[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
2020-10-08 03:50:33 +02:00
rounds_between_energy = len(state.residences)+2
2020-10-07 20:02:47 +02:00
return True
2020-10-07 19:15:09 +02:00
for j in range(len(state.utilities)):
building = state.utilities[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
return True
return False
def build(structure):
global building_under_construction, rounds_between_energy, state
2020-10-05 21:21:25 +02:00
for i in range(len(available_tiles)):
if isinstance(available_tiles[i], tuple):
game_layer.place_foundation(available_tiles[i], structure)
2020-10-07 20:02:47 +02:00
for j in range(len(state.residences)):
building = state.residences[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
2020-10-08 03:50:33 +02:00
rounds_between_energy = len(state.residences)+2
2020-10-07 20:02:47 +02:00
return True
for j in range(len(state.utilities)):
building = state.utilities[j]
coords_to_check = (building.X, building.Y)
if coords_to_check == available_tiles[i]:
available_tiles[i] = building
building_under_construction = (building.X, building.Y, j)
return True
return False
2020-10-07 19:15:09 +02:00
return False
2020-09-27 13:46:19 +02:00
if __name__ == "__main__":
main()